diff options
Diffstat (limited to '04_dynld_nostd/dynld.c')
-rw-r--r-- | 04_dynld_nostd/dynld.c | 591 |
1 files changed, 591 insertions, 0 deletions
diff --git a/04_dynld_nostd/dynld.c b/04_dynld_nostd/dynld.c new file mode 100644 index 0000000..6e1bebf --- /dev/null +++ b/04_dynld_nostd/dynld.c @@ -0,0 +1,591 @@ +// Copyright (c) 2021 Johannes Stoelp + +#include <auxv.h> +#include <common.h> +#include <elf.h> +#include <io.h> +#include <syscalls.h> + +#include <stdbool.h> +#include <stdint.h> + +// {{{ Global constans + +enum { + // Hard-coded page size. + // We assert against the `AT_PAGESZ` auxiliary vector entry. + PAGE_SIZE = 4096, + // Hard-coded upper limit of `DT_NEEDED` entries per dso + // (for simplicity to not require allocations). + MAX_NEEDED = 1, +}; + +// }}} +// {{{ Execinfo + +typedef struct { + uint64_t argc; // Number of commandline arguments. + const char** argv; // List of pointer to command line arguments. + uint64_t envc; // Number of environment variables. + const char** envv; // List of pointers to environment variables. + uint64_t auxv[AT_MAX_CNT]; // Auxiliary vector entries. +} ExecInfo; + +// Interpret and extract data passed on the stack by the Linux Kernel +// when loading the initial process image. +// The data is organized according to the SystemV x86_64 ABI. +static ExecInfo get_exec_info(const uint64_t* prctx) { + ExecInfo info = {0}; + + info.argc = *prctx; + info.argv = (const char**)(prctx + 1); + info.envv = (const char**)(info.argv + info.argc + 1); + + // Count the number of environment variables in the `ENVP` segment. + for (const char** env = info.envv; *env; ++env) { + info.envc += 1; + } + + // Decode auxiliary vector `AUXV`. + for (const Auxv64Entry* auxvp = (const Auxv64Entry*)(info.envv + info.envc + 1); auxvp->tag != AT_NULL; ++auxvp) { + if (auxvp->tag < AT_MAX_CNT) { + info.auxv[auxvp->tag] = auxvp->val; + } + } + + return info; +} + +// }}} +// {{{ Dso + +typedef struct { + uint8_t* base; // Base address. + void (*entry)(); // Entry function. + uint64_t dynamic[DT_MAX_CNT]; // `.dynamic` section entries. + uint64_t needed[MAX_NEEDED]; // Shared object dependencies (`DT_NEEDED` entries). + uint32_t needed_len; // Number of `DT_NEEDED` entries (SO dependencies). +} Dso; + +static void decode_dynamic(Dso* dso, uint64_t dynoff) { + // Decode `.dynamic` section of the `dso`. + for (const Elf64Dyn* dyn = (const Elf64Dyn*)(dso->base + dynoff); dyn->tag != DT_NULL; ++dyn) { + if (dyn->tag == DT_NEEDED) { + ERROR_ON(dso->needed_len == MAX_NEEDED, "Too many dso dependencies!"); + dso->needed[dso->needed_len++] = dyn->val; + } else if (dyn->tag < DT_MAX_CNT) { + dso->dynamic[dyn->tag] = dyn->val; + } + } + + // Check for string table entries. + ERROR_ON(dso->dynamic[DT_STRTAB] == 0, "DT_STRTAB missing in dynamic section!"); + ERROR_ON(dso->dynamic[DT_STRSZ] == 0, "DT_STRSZ missing in dynamic section!"); + + // Check for symbol table entries. + ERROR_ON(dso->dynamic[DT_SYMTAB] == 0, "DT_SYMTAB missing in dynamic section!"); + ERROR_ON(dso->dynamic[DT_SYMENT] == 0, "DT_SYMENT missing in dynamic section!"); + ERROR_ON(dso->dynamic[DT_SYMENT] != sizeof(Elf64Sym), "ELf64Sym size miss-match!"); + + // Check for SystemV hash table. We only support SystemV hash tables + // `DT_HASH`, not gnu hash tables `DT_GNU_HASH`. + ERROR_ON(dso->dynamic[DT_HASH] == 0, "DT_HASH missing in dynamic section!"); +} + +static Dso get_prog_dso(const ExecInfo* info) { + Dso prog = {0}; + + // Determine the base address of the user program. + // We only support the case where the Kernel already mapped the + // user program into the virtual address space and therefore the + // auxiliary vector contains an `AT_PHDR` entry pointing to the + // Program Headers of the user program. + // In that case, the base address of the user program can be + // computed by taking the absolute address of the `AT_PHDR` entry + // and subtracting the relative address `p_vaddr` of the `PT_PHDR` + // entry from the user programs Program Header iself. + // + // VMA + // | | + // PROG BASE -> | | ^ + // | | | + // | | | <---------------------+ + // | | | | + // AT_PHDR -> +---------+ v | + // | | | + // | | | + // | PT_PHDR | -----> Elf64Phdr { .., vaddr, .. } + // | | + // | | + // +---------+ + // | | + // + // PROG BASE = AT_PHDR - PT_PHDR.vaddr + ERROR_ON(info->auxv[AT_PHDR] == 0 || info->auxv[AT_EXECFD] != 0, "AT_PHDR entry missing in the AUXV!"); + + // Offset to the `.dynamic` section from the user programs `base addr`. + uint64_t dynoff = 0; + + // Program header of the user program. + const Elf64Phdr* phdr = (const Elf64Phdr*)info->auxv[AT_PHDR]; + + ERROR_ON(info->auxv[AT_PHENT] != sizeof(Elf64Phdr), "Elf64Phdr size miss-match!"); + + // Decode PHDRs of the user program. + for (unsigned phdrnum = info->auxv[AT_PHNUM]; --phdrnum; ++phdr) { + if (phdr->type == PT_PHDR) { + ERROR_ON(info->auxv[AT_PHDR] < phdr->vaddr, "Expectation auxv[AT_PHDR] >= phdr->vaddr failed!"); + prog.base = (uint8_t*)(info->auxv[AT_PHDR] - phdr->vaddr); + } else if (phdr->type == PT_DYNAMIC) { + dynoff = phdr->vaddr; + } + + ERROR_ON(phdr->type == PT_TLS, "Thread local storage not supported found PT_TLS!"); + } + ERROR_ON(dynoff == 0, "PT_DYNAMIC entry missing in the user programs PHDR!"); + + // Decode `.dynamic` section. + decode_dynamic(&prog, dynoff); + + // Get the entrypoint of the user program form the auxiliary vector. + ERROR_ON(info->auxv[AT_ENTRY] == 0, "AT_ENTRY entry missing in the AUXV!"); + prog.entry = (void (*)())info->auxv[AT_ENTRY]; + + return prog; +} + +static uint64_t get_num_dynsyms(const Dso* dso) { + ERROR_ON(dso->dynamic[DT_HASH] == 0, "DT_HASH missing in dynamic section!"); + + // Get SystemV hash table. + const uint32_t* hashtab = (const uint32_t*)(dso->base + dso->dynamic[DT_HASH]); + + // SystemV hash table layout: + // nbucket + // nchain + // bucket[nbuckets] + // chain[nchains] + // + // From the SystemV ABI - Dynamic Linking - Hash Table: + // Both `bucket` and `chain` hold symbol table indexes. Chain + // table entries parallel the symbol table. The number of symbol + // table entries should equal `nchain`. + return hashtab[1]; +} + +static const char* get_str(const Dso* dso, uint64_t idx) { + ERROR_ON(dso->dynamic[DT_STRSZ] < idx, "String table indexed out-of-bounds!"); + return (const char*)(dso->base + dso->dynamic[DT_STRTAB] + idx); +} + +static const Elf64Sym* get_sym(const Dso* dso, uint64_t idx) { + ERROR_ON(get_num_dynsyms(dso) < idx, "Symbol table index out-of-bounds!"); + return (const Elf64Sym*)(dso->base + dso->dynamic[DT_SYMTAB]) + idx; +} + +static const Elf64Rela* get_pltreloca(const Dso* dso, uint64_t idx) { + ERROR_ON(dso->dynamic[DT_PLTRELSZ] < sizeof(Elf64Rela) * idx, "PLT relocation table indexed out-of-bounds!"); + return (const Elf64Rela*)(dso->base + dso->dynamic[DT_JMPREL]) + idx; +} + +static const Elf64Rela* get_reloca(const Dso* dso, uint64_t idx) { + ERROR_ON(dso->dynamic[DT_RELASZ] < sizeof(Elf64Rela) * idx, "RELA relocation table indexed out-of-bounds!"); + return (const Elf64Rela*)(dso->base + dso->dynamic[DT_RELA]) + idx; +} + +// }}} +// {{{ Init & Fini + +typedef void (*initfptr)(); + +static void init(const Dso* dso) { + if (dso->dynamic[DT_INIT]) { + initfptr* fn = (initfptr*)(dso->base + dso->dynamic[DT_INIT]); + (*fn)(); + } + + size_t nfns = dso->dynamic[DT_INIT_ARRAYSZ] / sizeof(initfptr); + initfptr* fns = (initfptr*)(dso->base + dso->dynamic[DT_INIT_ARRAY]); + while (nfns--) { + (*fns++)(); + } +} + +typedef void (*finifptr)(); + +static void fini(const Dso* dso) { + size_t nfns = dso->dynamic[DT_FINI_ARRAYSZ] / sizeof(finifptr); + finifptr* fns = (finifptr*)(dso->base + dso->dynamic[DT_FINI_ARRAY]) + nfns /* reverse destruction order */; + while (nfns--) { + (*--fns)(); + } + + if (dso->dynamic[DT_FINI]) { + finifptr* fn = (finifptr*)(dso->base + dso->dynamic[DT_FINI]); + (*fn)(); + } +} + +// }}} +// {{{ Symbol lookup + +static inline int strcmp(const char* s1, const char* s2) { + while (*s1 == *s2 && *s1) { + ++s1; + ++s2; + } + return *(unsigned char*)s1 - *(unsigned char*)s2; +} + +// Perform naive lookup for global symbol and return address if symbol was found. +// +// For simplicity this lookup doesn't use the hash table (`DT_HASH` | +// `DT_GNU_HASH`) but rather iterates of the dynamic symbol table. Using the +// hash table doesn't change the lookup result, however it yields better +// performance for large symbol tables. +// +// `dso` A handle to the dso which dynamic symbol table should be searched. +// `symname` Name of the symbol to look up. +static void* lookup_sym(const Dso* dso, const char* symname) { + for (unsigned i = 0; i < get_num_dynsyms(dso); ++i) { + const Elf64Sym* sym = get_sym(dso, i); + + if ((ELF64_ST_TYPE(sym->info) == STT_OBJECT || ELF64_ST_TYPE(sym->info) == STT_FUNC) && ELF64_ST_BIND(sym->info) == STB_GLOBAL && + sym->shndx != SHN_UNDEF) { + if (strcmp(symname, get_str(dso, sym->name)) == 0) { + return dso->base + sym->value; + } + } + } + return 0; +} + +// }}} +// {{{ Map Shared Library Dependency + +static Dso map_dependency(const char* dependency) { + // For simplicity we only search for SO dependencies in the current working dir. + ERROR_ON(access(dependency, R_OK) != 0, "Dependency '%s' does not exist!\n", dependency); + + const int fd = open(dependency, O_RDONLY); + ERROR_ON(fd < 0, "Failed to open '%s'", dependency); + + Elf64Ehdr ehdr; + // Read ELF header. + ERROR_ON(read(fd, &ehdr, sizeof(ehdr)) != (ssize_t)sizeof(ehdr), "Failed to read Elf64Ehdr!"); + + // Check ELF magic. + ERROR_ON(ehdr.ident[EI_MAG0] != '\x7f' || ehdr.ident[EI_MAG1] != 'E' || ehdr.ident[EI_MAG2] != 'L' || ehdr.ident[EI_MAG3] != 'F', + "Dependency '%s' wrong ELF magic value!\n", dependency); + // Check ELF header size. + ERROR_ON(ehdr.ehsize != sizeof(ehdr), "Elf64Ehdr size miss-match!"); + // Check for 64bit ELF. + ERROR_ON(ehdr.ident[EI_CLASS] != ELFCLASS64, "Dependency '%s' is not 64bit ELF!\n", dependency); + // Check for OS ABI. + ERROR_ON(ehdr.ident[EI_OSABI] != ELFOSABI_SYSV, "Dependency '%s' is not built for SysV OS ABI!\n", dependency); + // Check ELF type. + ERROR_ON(ehdr.type != ET_DYN, "Dependency '%s' is not a dynamic library!"); + // Check for Phdr. + ERROR_ON(ehdr.phnum == 0, "Dependency '%s' has no Phdr!\n", dependency); + + + Elf64Phdr phdr[ehdr.phnum]; + // Check PHDR header size. + ERROR_ON(ehdr.phentsize != sizeof(phdr[0]), "Elf64Phdr size miss-match!"); + + // Read Program headers at offset `phoff`. + ERROR_ON(pread(fd, &phdr, sizeof(phdr), ehdr.phoff) != (ssize_t)sizeof(phdr), "Failed to read Elf64Phdr[%d]!\n", ehdr.phnum); + + // Compute start and end address used by the library based on the all the `PT_LOAD` program headers. + uint64_t dynoff = 0; + uint64_t addr_start = (uint64_t)-1; + uint64_t addr_end = 0; + for (unsigned i = 0; i < ehdr.phnum; ++i) { + const Elf64Phdr* p = &phdr[i]; + if (p->type == PT_DYNAMIC) { + // Offset to `.dynamic` section. + dynoff = p->vaddr; + } else if (p->type == PT_LOAD) { + // Find start & end address. + if (p->vaddr < addr_start) { + addr_start = p->vaddr; + } else if (p->vaddr + p->memsz > addr_end) { + addr_end = p->vaddr + p->memsz; + } + } + + ERROR_ON(phdr->type == PT_TLS, "Thread local storage not supported found PT_TLS!"); + } + + // Align start address to the next lower page boundary. + addr_start = addr_start & ~(PAGE_SIZE - 1); + // Align end address to the next higher page boundary. + addr_end = (addr_end + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); + + // Reserve region big enough to map all `PT_LOAD` sections of `dependency`. + uint8_t* map = mmap(0 /* addr */, addr_end - addr_start /* len */, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, + -1 /* fd */, 0 /* file offset */); + ERROR_ON(map == MAP_FAILED, "Failed to mmap address space for dependency '%s'\n", dependency); + + // Compute base address for library. + uint8_t* base = map - addr_start; + + // Map in all `PT_LOAD` segments from the `dependency`. + for (unsigned i = 0; i < ehdr.phnum; ++i) { + const Elf64Phdr* p = &phdr[i]; + ; + if (p->type != PT_LOAD) { + continue; + } + + // Page align start & end address. + uint64_t addr_start = p->vaddr & ~(PAGE_SIZE - 1); + uint64_t addr_end = (p->vaddr + p->memsz + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); + + // Page align file offset. + uint64_t off = p->offset & ~(PAGE_SIZE - 1); + + // Compute segment permissions. + uint32_t prot = (p->flags & PF_X ? PROT_EXEC : 0) | (p->flags & PF_R ? PROT_READ : 0) | (p->flags & PF_W ? PROT_WRITE : 0); + + // Mmap segment. + ERROR_ON(mmap(base + addr_start, addr_end - addr_start, prot, MAP_PRIVATE | MAP_FIXED, fd, off) != base + addr_start, + "Failed to map `PT_LOAD` section %d for dependency '%s'.", i, dependency); + + // From the SystemV ABI - Program Headers: + // If the segment’s memorysize (memsz) is larger than the file size (filesz), the "extra" bytes are defined to hold the value + // `0` and to follow the segment’s initialized are + // + // This is typically used by the `.bss` section. + if (p->memsz > p->filesz) { + memset(base + p->vaddr + p->filesz, 0 /* byte */, p->memsz - p->filesz /*len*/); + } + } + + // Close file descriptor. + close(fd); + + Dso dso = {0}; + dso.base = base; + decode_dynamic(&dso, dynoff); + return dso; +} + +// }}} +// {{{ Resolve relocations + +typedef struct LinkMap { + const Dso* dso; // Pointer to Dso list object. + const struct LinkMap* next; // Pointer to next LinkMap entry ('0' terminates the list). +} LinkMap; + +// Resolve a single relocation of `dso`. +// +// Resolve the relocation `reloc` by looking up the address of the symbol +// referenced by the relocation. If the address of the symbol was found the +// relocation is patched, if the address was not found the process exits. +static void resolve_reloc(const Dso* dso, const LinkMap* map, const Elf64Rela* reloc) { + // Get symbol referenced by relocation. + const int symidx = ELF64_R_SYM(reloc->info); + const Elf64Sym* sym = get_sym(dso, symidx); + const char* symname = get_str(dso, sym->name); + + // Get relocation typy. + unsigned reloctype = ELF64_R_TYPE(reloc->info); + + // Find symbol address. + void* symaddr = 0; + // FIXME: Should relocations of type `R_X86_64_64` only be looked up in `dso` directly? + if (reloctype == R_X86_64_RELATIVE) { + // Symbols address is computed by re-basing the relative address based on the DSOs base address. + symaddr = (void*)(dso->base + reloc->addend); + } else { + // TODO: Explain special handling of R_X86_64_COPY. + for (const LinkMap* lmap = (reloctype == R_X86_64_COPY ? map->next : map); lmap && symaddr == 0; lmap = lmap->next) { + symaddr = lookup_sym(lmap->dso, symname); + } + } + ERROR_ON(symaddr == 0, "Failed lookup symbol %s while resolving relocations!", symname); + + pfmt("Resolved reloc %s to %p (base %p)\n", reloctype == R_X86_64_RELATIVE ? "<relative>" : symname, symaddr, dso->base); + + // Perform relocation according to relocation type. + switch (reloctype) { + case R_X86_64_GLOB_DAT: /* GOT entry for data objects. */ + case R_X86_64_JUMP_SLOT: /* PLT entry. */ + case R_X86_64_64: /* 64bit relocation (non-lazy). */ + case R_X86_64_RELATIVE: /* DSO base relative relocation. */ + // Patch storage unit of relocation with absolute address of the symbol. + *(uint64_t*)(dso->base + reloc->offset) = (uint64_t)symaddr; + break; + case R_X86_64_COPY: /* Reference to global variable in shared ELF file. */ + // Copy initial value of variable into relocation address. + memcpy(dso->base + reloc->offset, (void*)symaddr, sym->size); + break; + default: + ERROR_ON(true, "Unsupported relocation type %d!\n", reloctype); + } +} + +// Resolve all relocations of `dso`. +// +// Resolve relocations from the PLT & RELA tables. Use `map` as link map which +// defines the order of the symbol lookup. +static void resolve_relocs(const Dso* dso, const LinkMap* map) { + // Resolve all relocation from the RELA table found in `dso`. There is + // typically one relocation per undefined dynamic object symbol (eg global + // variables). + for (unsigned long relocidx = 0; relocidx < (dso->dynamic[DT_RELASZ] / sizeof(Elf64Rela)); ++relocidx) { + const Elf64Rela* reloc = get_reloca(dso, relocidx); + resolve_reloc(dso, map, reloc); + } + + // Resolve all relocation from the PLT jump table found in `dso`. There is + // typically one relocation per undefined dynamic function symbol. + for (unsigned long relocidx = 0; relocidx < (dso->dynamic[DT_PLTRELSZ] / sizeof(Elf64Rela)); ++relocidx) { + const Elf64Rela* reloc = get_pltreloca(dso, relocidx); + resolve_reloc(dso, map, reloc); + } +} + +// }}} +// {{{ Dynamic Linking (lazy resolve) + +// Mark `dynresolve_entry` as `naked` because we want to fully control the +// stack layout. +// +// `noreturn` Function never returns. +// `naked` Don't generate prologue/epilogue sequences. +__attribute__((noreturn)) __attribute__((naked)) static void dynresolve_entry() { + asm("dynresolve_entry:\n\t" + // Pop arguments of PLT0 from the stack into rdi/rsi registers + // These are the first two integer arguments registers as defined by + // the SystemV abi and hence will be passed correctly to `dynresolve`. + "pop %rdi\n\t" // GOT[1] entry (pushed by PLT0 pad). + "pop %rsi\n\t" // Relocation index (pushed by PLT0 pad). + "jmp dynresolve"); +} + +// `used` Force to emit code for function. +// `unused` Don't warn about unused function. +__attribute__((used)) __attribute__((unused)) static void dynresolve(uint64_t got1, uint64_t reloc_idx) { + ERROR_ON(true, + "ERROR: dynresolve request not supported!" + "\n\tGOT[1] = 0x%x" + "\n\treloc_idx = %d\n", + got1, reloc_idx); +} + +// }}} +// {{{ Setup GOT + +static void setup_got(const Dso* dso) { + // GOT entries {0, 1, 2} have special meaning for the dynamic link process. + // GOT[0] Hold address of dynamic structure referenced by `_DYNAMIC`. + // GOT[1] Argument pushed by PLT0 pad on stack before jumping to GOT[2], + // can be freely used by dynamic linker to identify the caller. + // GOT[2] Jump target for PLT0 pad when doing dynamic resolve (lazy). + // + // We will not make use of GOT[0]/GOT[1] here but only GOT[2]. + + // Install dynamic resolve handler. This handler is used when binding + // symbols lazy. + // + // The handler is installed in the `GOT[2]` entry for each DSO object that + // has a GOT. It is jumped to from the `PLT0` pad with the following two + // arguments passed via the stack: + // - GOT[1] entry. + // - Relocation index. + // + // This can be seen in the following disassembly of section .plt: + // PLT0: + // push QWORD PTR [rip+0x3002] # GOT[1] + // jmp QWORD PTR [rip+0x3004] # GOT[2] + // nop DWORD PTR [rax+0x0] + // + // PLT1: + // jmp QWORD PTR [rip+0x3002] # GOT[3]; entry for <PLT1> + // push 0x0 # Relocation index + // jmp 401000 <PLT0> + // + // The handler at GOT[2] can pop the arguments as follows: + // pop %rdi // GOT[1] entry. + // pop %rsi // Relocation index. + + if (dso->dynamic[DT_PLTGOT] != 0) { + uint64_t* got = (uint64_t*)(dso->base + dso->dynamic[DT_PLTGOT]); + got[2] = (uint64_t)&dynresolve_entry; + } +} + +// }}} + +// {{{ Dynamic Linker Entrypoint + +void dl_entry(const uint64_t* prctx) { + // Parse SystemV ABI block. + const ExecInfo exec_info = get_exec_info(prctx); + + // Ensure hard-coded page size value is correct. + ERROR_ON(exec_info.auxv[AT_PAGESZ] != PAGE_SIZE, "Hard-coded PAGE_SIZE miss-match!"); + + // Initialize dso handle for user program but extracting necesarry + // information from `AUXV` and the `PHDR`. + const Dso dso_prog = get_prog_dso(&exec_info); + + // Map dependency. + // + // In this chapter the user program should have a single shared + // object dependency, which is our `libgreet.so` no-std shared + // library. + // The `libgreet.so` library itself should not have any dynamic + // dependencies. + ERROR_ON(dso_prog.needed_len != 1, "User program should have exactly one dependency!"); + + const Dso dso_lib = map_dependency(get_str(&dso_prog, dso_prog.needed[0])); + ERROR_ON(dso_lib.needed_len != 0, "The library should not have any further dependencies!"); + + // Setup LinkMap. + // + // Create a list of DSOs as link map with the following order: + // main -> libgreet.so + // The link map determines the symbol lookup order. + const LinkMap map_lib = {.dso = &dso_lib, .next = 0}; + const LinkMap map_prog = {.dso = &dso_prog, .next = &map_lib}; + + // Resolve relocations of the library (dependency). + resolve_relocs(&dso_lib, &map_prog); + // Resolve relocations of the main program. + resolve_relocs(&dso_prog, &map_prog); + + // Initialize library. + init(&dso_lib); + // Initialize main program. + init(&dso_prog); + + // Setup global offset table (GOT). + // + // This installs a dynamic resolve handler, which should not be called in + // this example as we resolve all relocations before transferring control + // to the user program. + // For safety we still install a handler which will terminate the program + // once it is called. If we wouldn't install this handler the program would + // most probably SEGFAULT in case symbol binding would be invoked during + // runtime. + setup_got(&dso_lib); + setup_got(&dso_prog); + + // Transfer control to user program. + dso_prog.entry(); + + // Finalize main program. + fini(&dso_prog); + // Finalize library. + fini(&dso_lib); + + _exit(0); +} + +// }}} + +// vim:fdm=marker |