1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
use std::collections::HashMap;
use crate::llvm::{FnValue, FunctionPassManager, IRBuilder, Module, Value};
use crate::parser::{ExprAST, FunctionAST, PrototypeAST};
use crate::Either;
type CodegenResult<T> = Result<T, String>;
/// Code generator from kaleidoscope AST to LLVM IR.
pub struct Codegen<'llvm, 'a> {
module: &'llvm Module,
builder: &'a IRBuilder<'llvm>,
fpm: &'a FunctionPassManager<'llvm>,
fn_protos: &'a mut HashMap<String, PrototypeAST>,
}
impl<'llvm, 'a> Codegen<'llvm, 'a> {
/// Compile either a [`PrototypeAST`] or a [`FunctionAST`] into the LLVM `module`.
pub fn compile(
module: &'llvm Module,
fn_protos: &mut HashMap<String, PrototypeAST>,
compilee: Either<&PrototypeAST, &FunctionAST>,
) -> CodegenResult<FnValue<'llvm>> {
let mut cg = Codegen {
module,
builder: &IRBuilder::with_ctx(module),
fpm: &FunctionPassManager::with_ctx(module),
fn_protos,
};
let mut variables = HashMap::new();
match compilee {
Either::A(proto) => Ok(cg.codegen_prototype(proto)),
Either::B(func) => cg.codegen_function(func, &mut variables),
}
}
fn codegen_expr(
&self,
expr: &ExprAST,
named_values: &mut HashMap<String, Value<'llvm>>,
) -> CodegenResult<Value<'llvm>> {
match expr {
ExprAST::Number(num) => Ok(self.module.type_f64().const_f64(*num)),
ExprAST::Variable(name) => match named_values.get(name.as_str()) {
Some(value) => Ok(*value),
None => Err("Unknown variable name".into()),
},
ExprAST::Binary(binop, lhs, rhs) => {
let l = self.codegen_expr(lhs, named_values)?;
let r = self.codegen_expr(rhs, named_values)?;
match binop {
'+' => Ok(self.builder.fadd(l, r)),
'-' => Ok(self.builder.fsub(l, r)),
'*' => Ok(self.builder.fmul(l, r)),
'<' => {
let res = self.builder.fcmpult(l, r);
// Turn bool into f64.
Ok(self.builder.uitofp(res, self.module.type_f64()))
}
_ => Err("invalid binary operator".into()),
}
}
ExprAST::Call(callee, args) => match self.get_function(callee) {
Some(callee) => {
if callee.args() != args.len() {
return Err("Incorrect # arguments passed".into());
}
// Generate code for function argument expressions.
let mut args: Vec<Value<'_>> = args
.iter()
.map(|arg| self.codegen_expr(arg, named_values))
.collect::<CodegenResult<_>>()?;
Ok(self.builder.call(callee, &mut args))
}
None => Err("Unknown function referenced".into()),
},
ExprAST::If { cond, then, else_ } => {
// For 'if' expressions we are building the following CFG.
//
// ; cond
// br
// |
// +-----+------+
// v v
// ; then ; else
// | |
// +-----+------+
// v
// ; merge
// phi then, else
// ret phi
let cond_v = {
// Codgen 'cond' expression.
let v = self.codegen_expr(cond, named_values)?;
// Compare 'v' against '0' as 'one = ordered not equal'.
self.builder
.fcmpone(v, self.module.type_f64().const_f64(0f64))
};
// Get the function we are currently inserting into.
let the_function = self.builder.get_insert_block().get_parent();
// Create basic blocks for the 'then' / 'else' expressions as well as the return
// instruction ('merge').
//
// Append the 'then' basic block to the function, don't insert the 'else' and
// 'merge' basic blocks yet.
let then_bb = self.module.append_basic_block(the_function);
let else_bb = self.module.create_basic_block();
let merge_bb = self.module.create_basic_block();
// Create a conditional branch based on the result of the 'cond' expression.
self.builder.cond_br(cond_v, then_bb, else_bb);
// Move to 'then' basic block and codgen the 'then' expression.
self.builder.pos_at_end(then_bb);
let then_v = self.codegen_expr(then, named_values)?;
// Create unconditional branch to 'merge' block.
self.builder.br(merge_bb);
// Update reference to current basic block (in case the 'then' expression added new
// basic blocks).
let then_bb = self.builder.get_insert_block();
// Now append the 'else' basic block to the function.
the_function.append_basic_block(else_bb);
// Move to 'else' basic block and codgen the 'else' expression.
self.builder.pos_at_end(else_bb);
let else_v = self.codegen_expr(else_, named_values)?;
// Create unconditional branch to 'merge' block.
self.builder.br(merge_bb);
// Update reference to current basic block (in case the 'else' expression added new
// basic blocks).
let else_bb = self.builder.get_insert_block();
// Now append the 'merge' basic block to the function.
the_function.append_basic_block(merge_bb);
// Move to 'merge' basic block.
self.builder.pos_at_end(merge_bb);
// Codegen the phi node returning the appropriate value depending on the branch
// condition.
let phi = self.builder.phi(
self.module.type_f64(),
&[(then_v, then_bb), (else_v, else_bb)],
);
Ok(*phi)
}
ExprAST::For {
var,
start,
end,
step,
body,
} => {
// For 'for' expression we build the following structure.
//
// entry:
// init = start expression
// br loop
// loop:
// i = phi [%init, %entry], [%new_i, %loop]
// ; loop body ...
// new_i = increment %i by step expression
// ; check end condition and branch
// end:
// Compute initial value for the loop variable.
let start_val = self.codegen_expr(start, named_values)?;
let the_function = self.builder.get_insert_block().get_parent();
// Get current basic block (used in the loop variable phi node).
let entry_bb = self.builder.get_insert_block();
// Add new basic block to emit loop body.
let loop_bb = self.module.append_basic_block(the_function);
self.builder.br(loop_bb);
self.builder.pos_at_end(loop_bb);
// Build phi not to pick loop variable in case we come from the 'entry' block.
// Which is the case when we enter the loop for the first time.
// We will add another incoming value once we computed the updated loop variable
// below.
let variable = self
.builder
.phi(self.module.type_f64(), &[(start_val, entry_bb)]);
// Insert the loop variable into the named values map that it can be referenced
// from the body as well as the end condition.
// In case the loop variable shadows an existing variable remember the shared one.
let old_val = named_values.insert(var.into(), *variable);
// Generate the loop body.
self.codegen_expr(body, named_values)?;
// Generate step value expression if available else use '1'.
let step_val = if let Some(step) = step {
self.codegen_expr(step, named_values)?
} else {
self.module.type_f64().const_f64(1f64)
};
// Increment loop variable.
let next_var = self.builder.fadd(*variable, step_val);
// Generate the loop end condition.
let end_cond = self.codegen_expr(end, named_values)?;
let end_cond = self
.builder
.fcmpone(end_cond, self.module.type_f64().const_f64(0f64));
// Get current basic block.
let loop_end_bb = self.builder.get_insert_block();
// Add new basic block following the loop.
let after_bb = self.module.append_basic_block(the_function);
// Register additional incoming value for the loop variable. This will choose the
// updated loop variable if we are iterating in the loop.
variable.add_incoming(next_var, loop_end_bb);
// Branch depending on the loop end condition.
self.builder.cond_br(end_cond, loop_bb, after_bb);
self.builder.pos_at_end(after_bb);
// Restore the shadowed variable if there was one.
if let Some(old_val) = old_val {
// We inserted 'var' above so it must exist.
*named_values.get_mut(var).unwrap() = old_val;
} else {
named_values.remove(var);
}
// Loops just always return 0.
Ok(self.module.type_f64().const_f64(0f64))
}
}
}
fn codegen_prototype(&self, PrototypeAST(name, args): &PrototypeAST) -> FnValue<'llvm> {
let type_f64 = self.module.type_f64();
let mut doubles = Vec::new();
doubles.resize(args.len(), type_f64);
// Build the function type: fn(f64, f64, ..) -> f64
let ft = self.module.type_fn(&mut doubles, type_f64);
// Create the function declaration.
let f = self.module.add_fn(name, ft);
// Set the names of the function arguments.
for idx in 0..f.args() {
f.arg(idx).set_name(&args[idx]);
}
f
}
fn codegen_function(
&mut self,
FunctionAST(proto, body): &FunctionAST,
named_values: &mut HashMap<String, Value<'llvm>>,
) -> CodegenResult<FnValue<'llvm>> {
// Insert the function prototype into the `fn_protos` map to keep track for re-generating
// declarations in other modules.
self.fn_protos.insert(proto.0.clone(), proto.clone());
let the_function = self.get_function(&proto.0)
.expect("If proto not already generated, get_function will do for us since we updated fn_protos before-hand!");
if the_function.basic_blocks() > 0 {
return Err("Function cannot be redefined.".into());
}
// Create entry basic block to insert code.
let bb = self.module.append_basic_block(the_function);
self.builder.pos_at_end(bb);
// New scope, clear the map with the function args.
named_values.clear();
// Update the map with the current functions args.
for idx in 0..the_function.args() {
let arg = the_function.arg(idx);
named_values.insert(arg.get_name().into(), arg);
}
// Codegen function body.
if let Ok(ret) = self.codegen_expr(body, named_values) {
self.builder.ret(ret);
assert!(the_function.verify());
// Run the optimization passes on the function.
self.fpm.run(the_function);
Ok(the_function)
} else {
todo!("Failed to codegen function body, erase from module!");
}
}
/// Lookup function with `name` in the LLVM module and return the corresponding value reference.
/// If the function is not available in the module, check if the prototype is known and codegen
/// it.
/// Return [`None`] if the prototype is not known.
fn get_function(&self, name: &str) -> Option<FnValue<'llvm>> {
let callee = match self.module.get_fn(name) {
Some(callee) => callee,
None => {
let proto = self.fn_protos.get(name)?;
self.codegen_prototype(proto)
}
};
Some(callee)
}
}