Tools
zsh(1)
Keybindings
Change input mode:
bindkey -v change to vi keymap
bindkey -e change to emacs keymap
Define key-mappings:
bindkey list mappings in current keymap
bindkey in-str cmd create mapping for `in-str` to `cmd`
bindkey -r in-str remove binding for `in-str`
# C-v <key> dump <key> code, which can be used in `in-str`
# zle -l list all functions for keybindings
# man zshzle(1) STANDARD WIDGETS: get description of functions
Completion
Installation
Completion functions are provided via files and need to be placed in a location
covered by $fpath
. By convention the completion files are names as _<CMD>
.
A completion skeleton for the command foo
, stored in _foo
#compdef _foo foo
function _foo() {
...
}
Alternatively one can install a completion function explicitly by calling compdef <FUNC> <CMD>
.
Completion Variables
Following variables are available in Completion functions:
$words # array with command line in words
$#words # number words
$CURRENT # index into $words for cursor position
$words[CURRENT-1] # previous word (relative to cursor position)
Completion Functions
_describe
simple completion, just words + description_arguments
sophisticated completion, allow to specify actions
Completion with _describe
_describe MSG COMP
MSG
simple string with header messageCOMP
array of completions where each entry is"opt:description"
function _foo() {
local -a opts
opts=('bla:desc for bla' 'blu:desc for blu')
_describe 'foo-msg' opts
}
compdef _foo foo
foo <TAB><TAB>
-- foo-msg --
bla -- desc for bla
blu -- desc for blu
Completion with _arguments
_arguments SPEC [SPEC...]
where SPEC
can have one of the following forms:
OPT[DESC]:MSG:ACTION
N:MSG:ACTION
Available actions
(op1 op2) list possible matches
->VAL set $state=VAL and continue, `$state` can be checked later in switch case
FUNC call func to generate matches
{STR} evaluate `STR` to generate matches
Example
Skeleton to copy/paste for writing simple completions.
Assume a program foo
with the following interface:
foo -c green|red|blue -s low|high -f <file> -d <dir> -h
The completion handler could be implemented as follows in a file called _foo
:
#compdef _foo foo
function _foo_color() {
local colors=()
colors+=('green:green color')
colors+=('red:red color')
colors+=('blue:blue color')
_describe "color" colors
}
function _foo() {
_arguments \
"-c[define color]:color:->s_color" \
"-s[select sound]:sound:(low high)" \
"-f[select file]:file:_files" \
"-d[select dir]:dir:_files -/" \
"-h[help]"
case $state in
s_color) _foo_color;;
esac
}
_files
is a zsh builtin utility function to complete files/dirs see
bash(1)
Expansion
Generator
# generate sequence from n to m
{n..m}
# generate sequence from n to m step by s
{n..m..s}
# expand cartesian product
{a,b}{c,d}
Parameter
# default param
bar=${foo:-some_val} # if $foo set, then bar=$foo else bar=some_val
# check param set
bar=${foo:?msg} # if $foo set, then bar=$foo else exit and print msg
# indirect
FOO=foo
BAR=FOO
bar=${!BAR} # deref value of BAR -> bar=$FOO
# prefix
${foo#prefix} # remove prefix when expanding $foo
# suffix
${foo%suffix} # remove suffix when expanding $foo
# substitute
${foo/pattern/string} # replace pattern with string when expanding foo
# pattern starts with
# '/' replace all occurences of pattern
# '#' pattern match at beginning
# '%' pattern match at end
Note:
prefix
/suffix
/pattern
are expanded as pathnames.
Pathname
* match any string
? match any single char
\\ match backslash
[abc] match any char of 'a' 'b' 'c'
[a-z] match any char between 'a' - 'z'
[^ab] negate, match all not 'a' 'b'
[:class:] match any char in class, available:
alnum,alpha,ascii,blank,cntrl,digit,graph,lower,
print,punct,space,upper,word,xdigit
Wit extglob
shell option enabled it is possible to have more powerful
patterns. In the following pattern-list
is one ore more patterns separated
by |
char.
?(pattern-list) matches zero or one occurrence of the given patterns
*(pattern-list) matches zero or more occurrences of the given patterns
+(pattern-list) matches one or more occurrences of the given patterns
@(pattern-list) matches one of the given patterns
!(pattern-list) matches anything except one of the given patterns
Note:
shopt -s extglob
/shopt -u extglob
to enable/disableextglob
option.
I/O redirection
Note: The trick with bash I/O redirection is to interpret from left-to-right.
# stdout & stderr to file
command >file 2>&1
# equivalent
command &>file
# stderr to stdout & stdout to file
command 2>&1 >file
Explanation
j>&i
Duplicate fd i
to fd j
, making j
a copy of i
. See dup2(2).
Example:
command 2>&1 >file
- duplicate
fd 1
tofd 2
, effectively redirectingstderr
tostdout
- redirect
stdout
tofile
Argument parsing with getopts
The getopts
builtin uses following global variables:
OPTARG
, value of last option argumentOPTIND
, index of the next argument to process (user must reset)OPTERR
, display errors if set to1
getopts <optstring> <param> [<args>]
<optstring>
specifies the names of supported options, egf:c
f:
means-f
option with an argumentc
means-c
option without an argument
<param>
specifies a variable name whichgetopts
fills with the last parsed option argument<args>
optionally specify argument string to parse, by defaultgetopts
parses$@
Example
#!/bin/bash
function parse_args() {
while getopts "f:c" PARAM; do
case $PARAM in
f) echo "GOT -f $OPTARG";;
c) echo "GOT -c";;
*) echo "ERR: print usage"; exit 1;;
esac
done
# users responsibility to reset OPTIND
OPTIND=0
}
parse_args -f xxx -c
parse_args -f yyy
Completion
The complete
builtin is used to interact with the completion system.
complete # print currently installed completion handler
complete -F <func> <cmd> # install <func> as completion handler for <cmd>
complete -r <cmd> # uninstall completion handler for <cmd>
Variables available in completion functions:
# in
$1 # <cmd>
$2 # current word
$3 # privous word
COMP_WORDS # array with current command line words
COMP_CWORD # index into COMP_WORDS with current cursor position
# out
COMPREPLY # array with possible completions
The compgen
builtin is used to generate possible matches by comparing word
against words generated by option
.
compgen <option> <word>
# usefule options:
# -W <list> specify list of possible completions
# -d generate list with dirs
# -f generate list with files
# -u generate list with users
# -e generate list with exported variables
# compare "f" against words "foo" "foobar" "bar" and generate matches
compgen -W "foo foobar bar" "f"
# compare "hom" against file/dir names and generate matches
compgen -d -f "hom"
Example
Skeleton to copy/paste for writing simple completions.
Assume a program foo
with the following interface:
foo -c green|red|blue -s low|high -f <file> -h
The completion handler could be implemented as follows:
function _foo() {
local curr=$2
local prev=$3
local opts="-c -s -f -h"
case $prev in
-c) COMPREPLY=( $(compgen -W "green red blue" -- $curr) );;
-s) COMPREPLY=( $(compgen -W "low high" -- $curr) );;
-f) COMPREPLY=( $(compgen -f -- $curr) );;
*) COMPREPLY=( $(compgen -W "$opts" -- $curr) );;
esac
}
complete -F _foo foo
fish(1)
Quick Info
Fish initialization file ~/.config/fish/config.fish
Switch between different key bindings:
fish_default_key_bindings
to use default key bindingsfish_vi_key_bindings
to use vi key bindings
Variables
Available scopes
local
variable local to a blockglobal
variable global to shell instanceuniversal
variable universal to all shell instances + preserved across shell restart
Set/Unset Variables
set <name> [<values>]
-l local scope
-g global scope
-U universal scope
-e erase variable
-S show verbose info
-x export to ENV
-u unexport from ENV
Lists
In fish
all variables are lists (start with index 1
, but lists can't
contain lists.
set foo a b c d
echo $foo[1] # a
echo $foo[-1] # d
echo $foo[2..3] # b c
echo $foo[1 3] # a c
$
can be seen as dereference operator.
set foo a; set a 1337
echo $$foo # outputs 1337
Cartesian product.
echo file.{h,cc}
# file.h file.cc
echo {a,b}{1,2}
# a1 b1 b2
Special Variables (Lists)
$status # exit code of last command
$pipestatus # list of exit codes of pipe chain
$CMD_DURATION # runtime of last command in ms
*PATH
Lists ending with PATH
are automatically split at :
when used and joined
with :
when exported to the environment.
set -x BLA_PATH a:b:c:d
echo $BLA_PATH # a b c d
env | grep BLA_PATH # BLA_PATH=a:b:c:d
Command Handling
# sub-commands are not run in quotes
echo "ls output: "(ls)
I/O redirection
# 'noclobber', fail if 'log' already exists
echo foo >? log
Control Flow
if
/ else
if grep foo bar
# do sth
else if grep foobar bar
# do sth else
else
# do sth else
end
switch
switch (echo foo)
case 'foo*'
# do start with foo
case bar dudel
# do bar and dudel
case '*'
# do else
end
while
Loop
while true
echo foo
end
for
Loop
for f in (ls)
echo $f
end
Functions
Function arguments are passed via $argv
list.
function fn_foo
echo $argv
end
Autoloading
When running a command fish attempts to autoload a function. The shell looks
for <cmd>.fish
in the locations defined by $fish_function_path
and loads
the function lazily if found.
This is the preferred way over monolithically defining all functions in a startup script.
Helper
functions # list al functions
functions foo # describe function 'foo'
functions -e foo # erase function 'foo'
funced foo # edit function 'foo'
# '-e vim' to edit in vim
Prompt
The prompt is defined by the output of the fish_prompt
function.
function fish_prompt
set -l cmd_ret
echo "> "(pwd) $cmd_ret" "
end
Use
set_color
to manipulate terminal colors.
Useful Builtins
# history
history search <str> # search history for <str>
history merge # merge histories from fish sessions
# list
count $var # count elements in list
# string
string split SEP STRING
Keymaps
Shift-Tab ........... tab-completion with search
Alt-Up / Alt-Down ... search history with token under the cursor
Alt-l ............... list content of dir under cursor
Alt-p ............... append '2>&1 | less;' to current cmdline
Debug
status print-stack-trace .. prints function stacktrace (can be used in scripts)
breakpoint ................ halt script execution and gives shell (C-d | exit
to continue)
tmux(1)
Terminology:
session
is a collection of pseudo terminals which can have multiplewindows
window
uses the entire screen and can be split into rectangularpanes
pane
is a single pseudo terminal instance
Tmux cli
# Session
tmux creates new session
tmux ls list running sessions
tmux kill-session -t <s> kill running session <s>
tmux attach -t <s> [-d] attach to session <s>, detach other clients [-d]
tmux detach -s <s> detach all clients from session <s>
# Environment
tmux showenv -g show global tmux environment variables
tmux setenv -g <var> <val> set variable in global tmux env
# Misc
tmux source-file <file> source config <file>
tmux lscm list available tmux commnds
tmux show -g show global tmux options
tmux display <msg> display message in tmux status line
Scripting
# Session
tmux list-sessions -F '#S' list running sessions, only IDs
# Window
tmux list-windows -F '#I' -t <s> list window IDs for session <s>
tmux selectw -t <s>:<w> select window <w> in session <s>
# Pane
tmux list-panes -F '#P' -t <s>:<w> list pane IDs for window <w> in session <s>
tmux selectp -t <s>:<w>.<p> select pane <p> in window <w> in session <s>
# Run commands
tmux send -t <s>:<w>.<p> "ls" C-m send cmds/keys to pane
tmux run -t <p> <sh-cmd> run shell command <sh-cmd> in background and report output on pane -t <p>
For example cycle through all panes in all windows in all sessions:
# bash
for s in $(tmux list-sessions -F '#S'); do
for w in $(tmux list-windows -F '#I' -t $s); do
for p in $(tmux list-panes -F '#P' -t $s:$w); do
echo $s:$w.$p
done
done
done
Bindings
prefix d detach from current session
prefix c create new window
prefix w open window list
prefix $ rename session
prefix , rename window
prefix . move current window
Following bindings are specific to my tmux.conf
:
C-s prefix
# Panes
prefix s horizontal split
prefix v vertical split
prefix f toggle maximize/minimize current pane
# Movement
prefix Tab toggle between window
prefix h move to pane left
prefix j move to pane down
prefix k move to pane up
prefix l move to pane right
# Resize
prefix C-h resize pane left
prefix C-j resize pane down
prefix C-k resize pane up
prefix C-l resize pane right
# Copy/Paste
prefix C-v enter copy mode
prefix C-p paste yanked text
prefix C-b open copy-buffer list
# In Copy Mode
v enable visual mode
y yank selected text
Command mode
To enter command mode prefix :
.
Some useful commands are:
setw synchronize-panes on/off enables/disables synchronized input to all panes
list-keys -t vi-copy list keymaps for vi-copy mode
git(1)
staging
git add -p [<file>] ............ partial staging (interactive)
Remote
git remote -v .................. list remotes verbose (with URLs)
git remote show [-n] <remote> .. list info for <remote> (like remote HEAD,
remote branches, tracking mapping)
Branching
git branch [-a] ................ list available branches; -a to include
remote branches
git branch -vv ................. list branch & annotate with head sha1 &
remote tracking branch
git branch <bname> ............. create branch with name <bname>
git checkout <bname> ........... switch to branch with name <bname>
git checkout --track <branch> .. start to locally track a remote branch
git push -u origin <rbname> .... push branch to origin (or other remote), and
setup <rbname> as tracking branch
Resetting
git reset [opt] <ref|commit>
opt:
--mixed .................... resets index, but not working tree
--hard ..................... matches the working tree and index to that
of the tree being switched to any changes to
tracked files in the working tree since
<commit> are lost
git reset HEAD <file> .......... remove file from staging
git reset --soft HEAD~1 ........ delete most recent commit but keep work
git reset --hard HEAD~1 ........ delete most recent commit and delete work
Tags
git tag -a <tname> -m "descr" ........ creates an annotated tag (full object
containing tagger, date, ...)
git tag -l ........................... list available tags
git checkout tag/<tname> ............. checkout specific tag
git checkout tag/<tname> -b <bname> .. checkout specific tag in a new branch
Diff
git diff HEAD:<fname> origin/HEAD:<fname> ... diff files for different refs
git diff -U$(wc -l <fname>) <fname> ......... shows complete file with diffs
instead of usual diff snippets
Log
git log --oneline .... shows log in single line per commit -> alias for
'--pretty=oneline --abbrev-commit'
git log --graph ...... text based graph of commit history
git log --decorate ... decorate log with REFs
File history
git log -p <file> ......... show commit history + diffs for <file>
git log --oneline <file> .. show commit history for <file> in compact format
Patching
git format-patch <opt> <since>/<revision range>
opt:
-N ................... use [PATCH] instead [PATCH n/m] in subject when
generating patch description (for patches spanning
multiple commits)
--start-number <n> ... start output file generation with <n> as start
number instead '1'
since spcifier:
-3 .................. e.g: create a patch from last three commits
<commit hash> ....... create patch with commits starting after <commit hash>
git am <patch> ......... apply patch and create a commit for it
git apply --stat <PATCH> ... see which files the patch would change
git apply --check <PATCH> .. see if the patch can be applied cleanly
git apply <PATCH> .......... apply the patch locally without creating a commit
# eg: generate patches for each commit from initial commit on
git format-patch -N $(git rev-list --max-parents=0 HEAD)
# generate single patch file from a certain commit/ref
git format-patch <COMMIT/REF> --stdout > my-patch.patch
Submodules
git submodule add <url> [<path>] .......... add new submodule to current project
git clone --recursive <url> ............... clone project and recursively all
submodules (same as using
'git submodule update --init
--recursive' after clone)
git submodule update --init --recursive ... checkout submodules recursively
using the commit listed in the
super-project (in detached HEAD)
git submodule update --remote <submod> .... fetch & merge remote changes for
<submod>, this will pull
origin/HEAD or a branch specified
for the submodule
git diff --submodule ...................... show commits that are part of the
submodule diff
Inspection
git ls-tree [-r] <ref> .... show git tree for <ref>, -r to recursively ls sub-trees
git show <obj> ............ show <obj>
git cat-file -p <obj> ..... print content of <obj>
Revision Specifier
HEAD ........ last commit
HEAD~1 ...... last commit-1
HEAD~N ...... last commit-N (linear backwards when in tree structure, check
difference between HEAD^ and HEAD~)
git rev-list --max-parents=0 HEAD ........... first commit
awk(1)
awk [opt] program [input]
-F <sepstr> field separator string (can be regex)
program awk program
input file or stdin if not file given
Input processing
Input is processed in two stages:
- Splitting input into a sequence of
records
. By default split atnewline
character, but can be changed via the builtinRS
variable. - Splitting a
record
intofields
. By default strings withoutwhitespace
, but can be changed via the builtin variableFS
or command line option-F
.
Fields are accessed as follows:
$0
wholerecord
$1
field one$2
field two- ...
Program
An awk
program is composed of pairs of the form:
pattern { action }
The program is run against each record
in the input stream. If a pattern
matches a record
the corresponding action
is executed and can access the
fields
.
INPUT
|
v
record ----> ∀ pattern matched
| |
v v
fields ----> run associated action
Any valid awk expr
can be a pattern
.
Special pattern
awk provides two special patterns, BEGIN
and END
, which can be used
multiple times. Actions with those patterns are executed exactly once.
BEGIN
actions are run before processing the first recordEND
actions are run after processing the last record
Special variables
RS
record separator: first char is the record separator, by defaultFS
field separator: regex to split records into fields, by defaultNR
number record: number of current record
Special statements & functions
-
printf "fmt", args...
Print format string, args are comma separated.
%s
string%d
decimal%x
hex%f
float
Width can be specified as
%Ns
, this reservesN
chars for a string. For floats one can use%N.Mf
,N
is the total number including.
andM
. -
strftime("fmt")
Print time stamp formatted by
fmt
.%Y
full year (eg 2020)%m
month (01-12)%d
day (01-31)%F
alias for%Y-%m-%d
%H
hour (00-23)%M
minute (00-59)%S
second (00-59)%T
alias for%H:%M:%S
Examples
Filter records
awk 'NR%2 == 0 { print $0 }' <file>
The pattern NR%2 == 0
matches every second record and the action { print $0 }
prints the whole record.
Capture in variables
# /proc/<pid>/status
# Name: cat
# ...
# VmRSS: 516 kB
# ...
for f in /proc/*/status; do
cat $f | awk '
/^VmRSS/ { rss = $2/1024 }
/^Name/ { name = $2 }
END { printf "%16s %6d MB\n", name, rss }';
done | sort -k2 -n
We capture values from VmRSS
and Name
into variables and print them at the
END
once processing all records is done.
Run shell command and capture output
cat /proc/1/status | awk '
/^Pid/ {
"ps --no-header -o user " $2 | getline user;
print user
}'
We build a ps
command line and capture the first line of the processes output
in the user
variable and then print it.
emacs(1)
help
C-h ? list available help modes
C-h f describe function
C-h v describe variable
C-h c <KEY> print command bound to <KEY>
C-h k <KEY> describe command bound to <KEY>
C-h b list buffer local key-bindings
<kseq> C-h list possible key-bindings with <kseq>
eg C-x C-h -> list key-bindings beginning with C-x
package manager
package-refresh-contents refresh package list
package-list-packages list available/installed packages
window
C-x 0 kill focused window
C-x 1 kill all other windows
C-x 2 split horizontal
C-x 3 split vertical
yank/paste
C-<SPACE> set start mark to select text
M-w copy selected text
C-w kill selected text
C-y paste selected text
M-y cycle through kill-ring
block/rect
C-x <SPC> activate rectangle-mark-mode
M-x string-rectangle <RET> insert text in marked rect
mass edit
C-x h mark whole buffer (mark-whole-buffer)
M-x delete-matching-line <RET> delete lines matching regex
M-x % search & replace region (query-replace)
C-M-x % search & replace regex (query-replace-regexp)
grep
M-x find-grep <RET> run find-grep result in *grep* buffer
n/p navigate next/previous match in *grep* buffer
lisp mode
M-x lisp-interaction-mode activate lisp mode
C-M-x evaluate top expr under cursor
C-x C-e eval-last-sexp
C-u C-x C-e eval-last-sexp and prints result in current buffer
narrow
C-x n n show only focused region (narrow)
C-x n w show whole buffer (wide)
org
M-up/M-down re-arrange items in same hierarchy
M-left/M-right change item hierarchy
C-RET create new item below current
C-S-RET create new TODO item below current
S-left/S-right cycle TODO states
org source
<s TAB generate a source block
C-c ' edit source block (in lang specific buffer)
C-c C-c eval source block
gdb(1)
CLI
gdb [opts] [prg [-c coredump | -p pid]]
gdb [opts] --args prg <prg-args>
opts:
-p <pid> attach to pid
-c <coredump> use <coredump>
-x <file> execute script <file> before prompt
-ex <cmd> execute command <cmd> before prompt
--tty <tty> set I/O tty for debugee
Interactive usage
tty <tty>
Set <tty> as tty for debugee.
Make sure nobody reads from target tty, easiest is to spawn a shell
and run following in target tty:
> while true; do sleep 1024; done
set follow-fork-mode <child | parent>
Specify which process to follow when debuggee makes a fork(2)
syscall.
sharedlibrary [<regex>]
Load symbols of shared libs loaded by debugee. Optionally use <regex>
to filter libs for symbol loading.
break [-qualified] <sym> thread <tnum>
Set a breakpoint only for a specific thread.
-qualified: Tred <sym> as fully qualified symbol (quiet handy to set
breakpoints on C symbols in C++ contexts)
rbreak <regex>
Set breakpoints matching <regex>, where matching internally is done
on: .*<regex>.*
command [<bp_list>]
Define commands to run after breakpoint hit. If <bp_list> is not
specified attach command to last created breakpoint. Command block
terminated with 'end' token.
<bp_list>: Space separates list, eg 'command 2 5-8' to run command
for breakpoints: 2,5,6,7,8.
info functions [<regex>]
List functions matching <regex>. List all functions if no <regex>
provided.
info variables [<regex>]
List variables matching <regex>. List all variables if no <regex>
provided.
info handle [<signal>]
Print how to handle <signal>. If no <signal> specified print for all
signals.
handle <signal> <action>
Configure how gdb handles <signal> sent to debugee.
<action>:
stop/nostop Catch signal in gdb and break.
print/noprint Print message when gdb catches signal.
pass/nopass Pass signal down to debugee.
catch signal <signal>
Create a catchpoint for <signal>.
User commands (macros)
Gdb allows to create & document user commands as follows:
define <cmd>
# cmds
end
document <cmd>
# docu
end
To get all user commands or documentations one can use:
help user-defined
help <cmd>
Hooks
Gdb allows to create two types of command hooks
hook-
will be run before<cmd>
hookpost-
will be run after<cmd>
define hook-<cmd>
# cmds
end
define hookpost-<cmd>
# cmds
end
Examples
Catch SIGSEGV and execute commands
This creates a catchpoint
for the SIGSEGV
signal and attached the command
to it.
catch signal SIGSEGV
command
bt
c
end
Run backtrace
on thread 1 (batch mode)
gdb --batch -ex 'thread 1' -ex 'bt' -p <pid>
Script gdb for automating debugging sessions
To script gdb add commands into a file and pass it to gdb via -x
.
For example create run.gdb
:
set pagination off
break mmap
command
info reg rdi rsi rdx
bt
c
end
#initial drop
c
This script can be used as:
gdb --batch -x ./run.gdb -p <pid>
Know Bugs
Workaround command + finish
bug
When using finish
inside a command
block, commands after finish
are not
executed. To workaround that bug one can create a wrapper function which calls
finish
.
define handler
bt
finish
info reg rax
end
command
handler
end
radare2(1)
pd <n> [@ <addr>] # print disassembly for <n> instructions
# with optional temporary seek to <addr>
flags
fs # list flag-spaces
fs <fs> # select flag-space <fs>
f # print flags of selected flag-space
help
?*~<kw> # '?*' list all commands and '~' grep for <kw>
?*~... # '..' less mode /'...' interactive search
relocation
> r2 -B <baddr> <exe> # open <exe> mapped to addr <baddr>
oob <addr> # reopen current file at <baddr>
Resource analysis & monitor
lsof(8)
lsof
-a ......... AND slection filters instead ORing (OR: default)
-p <pid> ... filter by <pid>
+fg ........ show file flags for file descripros
-n ......... don't convert network addr to hostnames
-P ......... don't convert network port to service names
-i <@h[:p]>. show connections to h (hostname|ip addr) with optional port p
file flags:
R/W/RW ..... read/write/read-write
CR ......... create
AP ......... append
TR ......... truncate
Examples
File flags
Show open files with file flags for process:
lsof +fg -p <pid>
Open TCP connections
Show open tcp connections for $USER
:
lsof -a -u $USER -i tcp
Note: -a
ands the results. If -a
is not given all open files matching
$USER
and all tcp connections are listed (ored).
Open connection to specific host
Show open connections to localhost
for $USER
:
lsof -a -u $USER -i @localhost
pidstat(1)
pidstat [opt] [interval] [cont]
-U [user] show username instead UID, optionally only show for user
-r memory statistics
-d I/O statistics
-h single line per process and no lines with average
Page fault and memory utilization
pidstat -r -p <pid> [interval] [count]
minor_pagefault: Happens when the page needed is already in memory but not
allocated to the faulting process, in that case the kernel
only has to create a new page-table entry pointing to the
shared physical page (not required to load a memory page from
disk).
major_pagefault: Happens when the page needed is NOT in memory, the kernel
has to create a new page-table entry and populate the
physical page (required to load a memory page from disk).
I/O statistics
pidstat -d -p <pid> [interval] [count]
pgrep(1)
pgrep [opts] <pattern>
-n only list newest matching process
-u <usr> only show matching for user <usr>
-l additionally list command
-a additionally list command + arguments
Debug newest process
For example attach gdb to newest zsh process from $USER
.
gdb -p $(pgrep -n -u $USER zsh)
pmap(1)
pmap <pid>
Dump virtual memory map of process.
Compared to /proc/<pid>/maps it shows the size of the mappings.
pstack(1)
pstack <pid>
Dump stack for all threads of process.
Trace and Profile
strace(1)
strace [opts] [prg]
-f .......... follow child processes on fork(2)
-p <pid> .... attach to running process
-s <size> ... max string size, truncate of longer (default: 32)
-e <expr> ... expression for trace filtering
-o <file> ... log output into <file>
-c .......... dump syscall statitics at the end
<expr>:
trace=syscall[,syscall] .... trace only syscall listed
trace=file ................. trace all syscall that take a filename as arg
trace=process .............. trace process management related syscalls
trace=signal ............... trace signal related syscalls
signal ..................... trace signals delivered to the process
Examples
Trace open(2)
& socket(2)
syscalls for a running process + child processes:
strace -f -e trace=open,socket -p <pid>
Trace signals delivered to a running process:
strace -f -e signal -p <pid>
ltrace(1)
ltrace [opts] [prg]
-f .......... follow child processes on fork(2)
-p <pid> .... attach to running process
-o <file> ... log output into <file>
-l <filter> . show who calls into lib matched by <filter>
-C .......... demangle
Example
List which program/libs call into libstdc++
:
ltrace -l '*libstdc++*' -C -o ltrace.log ./main
perf(1)
perf list show supported hw/sw events
perf stat
-p <pid> .. show stats for running process
-I <ms> ... show stats periodically over interval <ms>
-e <ev> ... filter for events
perf top
-p <pid> .. show stats for running process
-F <hz> ... sampling frequency
-K ........ hide kernel threads
perf record
-p <pid> ............... record stats for running process
-F <hz> ................ sampling frequency
--call-graph <method> .. [fp, dwarf, lbr] method how to caputre backtrace
fp : use frame-pointer, need to compile with
-fno-omit-frame-pointer
dwarf: use .cfi debug information
lbr : use hardware last branch record facility
-g ..................... short-hand for --call-graph fp
-e <ev> ................ filter for events
perf report
-n .................... annotate symbols with nr of samples
--stdio ............... report to stdio, if not presen tui mode
-g graph,0.5,caller ... show caller based call chains with value >0.5
Useful <ev>:
page-faults
minor-faults
major-faults
cpu-cycles`
task-clock
Flamegraph
Flamegraph with single event trace
perf record -g -e cpu-cycles -p <pid>
perf script | FlameGraph/stackcollapse-perf.pl | FlameGraph/flamegraph.pl > cycles-flamegraph.svg
Flamegraph with multiple event traces
perf record -g -e cpu-cycles,page-faults -p <pid>
perf script --per-event-dump
# fold & generate as above
OProfile
operf -g -p <pid>
-g ...... caputre call-graph information
opreport [opt] FILE
show time spent per binary image
-l ...... show time spent per symbol
-c ...... show callgraph information (see below)
-a ...... add column with time spent accumulated over child nodes
ophelp show supported hw/sw events
/usr/bin/time(1)
# statistics of process run
/usr/bin/time -v <cmd>
Binary
od(1)
od [opts] <file>
-An don't print addr info
-tx4 print hex in 4 byte chunks
-ta print as named character
-tc printable chars or backslash escape
-w4 print 4 bytes per line
-j <n> skip <n> bytes from <file> (hex if start with 0x)
-N <n> dump <n> bytes (hex of start with 0x)
ASCII to hex string
echo -n AAAABBBB | od -An -w4 -tx4
>> 41414141
>> 42424242
echo -n '\x7fELF\n' | od -tx1 -ta -tc
>> 0000000 7f 45 4c 46 0a # tx1
>> del E L F nl # ta
>> 177 E L F \n # tc
Extract parts of file
For example .rodata
section from an elf file. We can use readelf
to get the
offset into the file where the .rodata
section starts.
readelf -W -S foo
>> Section Headers:
>> [Nr] Name Type Address Off Size ES Flg Lk Inf Al
>> ...
>> [15] .rodata PROGBITS 00000000004009c0 0009c0 000030 00 A 0 0 16
With the offset of -j 0x0009c0
we can dump -N 0x30
bytes from the beginning of
the .rodata
section as follows:
od -j 0x0009c0 -N 0x30 -tx4 -w4 foo
>> 0004700 00020001
>> 0004704 00000000
>> *
>> 0004740 00000001
>> 0004744 00000002
>> 0004750 00000003
>> 0004754 00000004
Note: Numbers starting with 0x
will be interpreted as hex by od
.
xxd(1)
xxd [opts]
-p dump continuous hexdump
-r convert hexdump into binary ('revert')
-e dump as little endian mode
-i output as C array
ASCII to hex stream
echo -n 'aabb' | xxd -p
>> 61616262
Hex to binary stream
echo -n '61616262' | xxd -p -r
>> aabb
ASCII to binary
echo -n '\x7fELF' | xxd -p | xxd -p -r | file -p -
>> ELF
ASCII to C
array (hex encoded)
xxd -i <(echo -n '\x7fELF')
>> unsigned char _proc_self_fd_11[] = {
>> 0x7f, 0x45, 0x4c, 0x46
>> };
>> unsigned int _proc_self_fd_11_len = 4;
readelf(1)
readelf [opts] <elf>
-W|--wide wide output, dont break output at 80 chars
-h print ELF header
-S print section headers
-l print program headers + segment mapping
-d print .dynamic section (dynamic link information)
--syms print symbol tables (.symtab .dynsym)
--dyn-syms print dynamic symbol table (exported symbols for dynamic linker)
-r print relocation sections (.rel.*, .rela.*)
objdump(1)
objdump [opts] <elf>
-M intel use intil syntax
-d disassemble text section
-D disassemble all sections
-S mix disassembly with source code
-C demangle
-j <section> display info for section
--[no-]show-raw-insn [dont] show object code next to disassembly
Disassemble section
For example .plt
section:
objdump -j .plt -d <elf>
nm(1)
nm [opts] <elf>
-C demangle
-u undefined only
Development
c++filt(1)
Demangle symbol
c++-filt <symbol_str>
Demangle stream
For example dynamic symbol table:
readelf -W --dyn-syms <elf> | c++filt
c++
Type deduction
Force compile error to see what auto
is deduced to.
auto foo = bar();
// force compile error
typename decltype(foo)::_;
glibc
malloc tracer mtrace(3)
Trace memory allocation and de-allocation to detect memory leaks.
Need to call mtrace(3)
to install the tracing hooks.
If we can't modify the binary to call mtrace
we can create a small shared
library and pre-load it.
// libmtrace.c
#include <mcheck.h>
__attribute__((constructor)) static void init_mtrace() { mtrace(); }
Compile as:
gcc -shared -fPIC -o libmtrace.so libmtrace.c
To generate the trace file run:
export MALLOC_TRACE=<file>
LD_PRELOAD=./libmtrace.so <binary>
Note: If MALLOC_TRACE
is not set mtrace
won't install tracing hooks.
To get the results of the trace file:
mtrace <binary> $MALLOC_TRACE
malloc check mallopt(3)
Configure action when glibc detects memory error.
export MALLOC_CHECK_=<N>
Useful values:
1 print detailed error & continue
3 print detailed error + stack trace + memory mappings & abort
7 print simple error message + stack trace + memory mappings & abort
gcc(1)
CLI
Preprocessing
While debugging can be helpful to just pre-process files.
gcc -E [-dM] ...
-E
run only preprocessor-dM
list only#define
statements
Builtins
__builtin_expect(expr, cond)
Give the compiler a hint which branch is hot, so it can lay out the code accordingly to reduce number of jump instructions. See on compiler explorer.
echo "
extern void foo();
extern void bar();
void run0(int x) {
if (__builtin_expect(x,0)) { foo(); }
else { bar(); }
}
void run1(int x) {
if (__builtin_expect(x,1)) { foo(); }
else { bar(); }
}
" | gcc -O2 -S -masm=intel -o /dev/stdout -xc -
Will generate something similar to the following.
run0
:bar
is on the path without branchrun1
:foo
is on the path without branch
run0:
test edi, edi
jne .L4
xor eax, eax
jmp bar
.L4:
xor eax, eax
jmp foo
run1:
test edi, edi
je .L6
xor eax, eax
jmp foo
.L6:
xor eax, eax
jmp bar
make(1)
Anatomy of make
rules
target .. : prerequisite ..
recipe
..
target
: an output generated by the ruleprerequisite
: an input that is used to generate the targetrecipe
: list of actions to generate the output from the input
Use
make -p
to print all rules and variables (implicitly + explicitly defined).
Pattern rules & Automatic variables
Pattern rules
A pattern rule contains the %
char (exactly one of them) and look like this example:
%.o : %.c
$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@
The target matches files of the pattern %.o
, where %
matches any none-empty
substring and other character match just them self.
The substring matched by %
is called the stem
.
%
in the prerequisite stands for the matched stem
in the target.
Automatic variables
As targets and prerequisites in pattern rules can't be spelled explicitly in the recipe, make provides a set of automatic variables to work with:
$@
: Name of the target that triggered the rule.$<
: Name of the first prerequisite.$^
: Names of all prerequisites (without duplicates).$+
: Names of all prerequisites (with duplicates).$*
: Stem of the pattern rule.
# file: Makefile
all: foobar blabla
foo% bla%: aaa bbb bbb
@echo "@ = $@"
@echo "< = $<"
@echo "^ = $^"
@echo "+ = $+"
@echo "* = $*"
@echo "----"
aaa:
bbb:
Running above Makefile
gives:
@ = foobar
< = aaa
^ = aaa bbb
+ = aaa bbb bbb
* = bar
----
@ = blabla
< = aaa
^ = aaa bbb
+ = aaa bbb bbb
* = bla
----
Useful functions
Substitution references
Substitute strings matching pattern in a list.
in := a.o l.a c.o
out := $(in:.o=.c)
# => out = a.c l.a c.c
filter
Keep strings matching a pattern in a list.
in := a.a b.b c.c d.d
out := $(filter %.b %.c, $(in))
# => out = b.b c.c
filter-out
Remove strings matching a pattern from a list.
in := a.a b.b c.c d.d
out := $(filter-out %.b %.c, $(in))
# => out = a.a d.d
abspath
Resolve each file name as absolute path (don't resolve symlinks).
$(abspath fname1 fname2 ..)
### `realpath`
Resolve each file name as canonical path.
```make
$(realpath fname1 fname2 ..)
ld.so(8)
Environment Variables
LD_PRELOAD=<l_so> colon separated list of libso's to be pre loaded
LD_DEBUG=<opts> comma separated list of debug options
=help list available options
=libs show library search path
=files processing of input files
=symbols show search path for symbol lookup
=bindings show against which definition a symbol is bound
LD_PRELOAD: Initialization Order and Link Map
Libraries specified in LD_PRELOAD
are loaded from left-to-right
but
initialized from right-to-left
.
> ldd ./main
>> libc.so.6 => /usr/lib/libc.so.6
> LD_PRELOAD=liba.so:libb.so ./main
-->
preloaded in this order
<--
initialized in this order
The preload order determines:
- the order libraries are inserted into the
link map
- the initialization order for libraries
For the example listed above the resulting link map
will look like the
following:
+------+ +------+ +------+ +------+
| main | -> | liba | -> | libb | -> | libc |
+------+ +------+ +------+ +------+
This can be seen when running with LD_DEBUG=files
:
> LD_DEBUG=files LD_PRELOAD=liba.so:libb.so ./main
# load order (-> determines link map)
>> file=liba.so [0]; generating link map
>> file=libb.so [0]; generating link map
>> file=libc.so.6 [0]; generating link map
# init order
>> calling init: /usr/lib/libc.so.6
>> calling init: <path>/libb.so
>> calling init: <path>/liba.so
>> initialize program: ./main
To verify the link map
order we let ld.so
resolve the memcpy(3)
libc
symbol (used in main) dynamically, while enabling LD_DEBUG=symbols,bindings
to see the resolving in action.
> LD_DEBUG=symbols,bindings LD_PRELOAD=liba.so:libb.so ./main
>> symbol=memcpy; lookup in file=./main [0]
>> symbol=memcpy; lookup in file=<path>/liba.so [0]
>> symbol=memcpy; lookup in file=<path>/libb.so [0]
>> symbol=memcpy; lookup in file=/usr/lib/libc.so.6 [0]
>> binding file ./main [0] to /usr/lib/libc.so.6 [0]: normal symbol `memcpy' [GLIBC_2.14]
Dynamic Linking (x86_64)
Dynamic linking basically works via one indirect jump. It uses a combination of
function trampolines (.plt
section) and a function pointer table (.got.plt
section).
On the first call the trampoline sets up some metadata and then jumps to the
ld.so
runtime resolve function, which in turn patches the table with the
correct function pointer.
.plt ....... procedure linkage table, contains function trampolines, usually
located in code segment (rx permission)
.got.plt ... global offset table for .plt, holds the function pointer table
Using radare2
we can analyze this in more detail:
[0x00401040]> pd 4 @ section..got.plt
;-- section..got.plt:
;-- .got.plt: ; [22] -rw- section size 32 named .got.plt
;-- _GLOBAL_OFFSET_TABLE_:
[0] 0x00404000 .qword 0x0000000000403e10 ; section..dynamic
[1] 0x00404008 .qword 0x0000000000000000
; CODE XREF from section..plt @ +0x6
[2] 0x00404010 .qword 0x0000000000000000
;-- reloc.puts:
; CODE XREF from sym.imp.puts @ 0x401030
[3] 0x00404018 .qword 0x0000000000401036 ; RELOC 64 puts
[0x00401040]> pd 6 @ section..plt
;-- section..plt:
;-- .plt: ; [12] -r-x section size 32 named .plt
┌─> 0x00401020 ff35e22f0000 push qword [0x00404008]
╎ 0x00401026 ff25e42f0000 jmp qword [0x00404010]
╎ 0x0040102c 0f1f4000 nop dword [rax]
┌ 6: int sym.imp.puts (const char *s);
└ ╎ 0x00401030 ff25e22f0000 jmp qword [reloc.puts]
╎ 0x00401036 6800000000 push 0
└─< 0x0040103b e9e0ffffff jmp sym..plt
- At address
0x00401030
in the.plt
section we see the indirect jump forputs
using the function pointer in_GLOBAL_OFFSET_TABLE_[3] (GOT)
. GOT[3]
initially points to instruction after theputs
trampoline0x00401036
.- This pushes the relocation index
0
and then jumps to the first trampoline0x00401020
. - The first trampoline jumps to
GOT[2]
which will be filled at program startup by theld.so
with its resolve function. - The
ld.so
resolve function fixes the relocation referenced by the relocation index pushed by theputs
trampoline. - The relocation entry at index
0
tells the resolve function which symbol to search for and where to put the function pointer:
As we can see the offset from relocation at index> readelf -r <main> >> Relocation section '.rela.plt' at offset 0x4b8 contains 1 entry: >> Offset Info Type Sym. Value Sym. Name + Addend >> 000000404018 000200000007 R_X86_64_JUMP_SLO 0000000000000000 puts@GLIBC_2.2.5 + 0
0
points toGOT[3]
.
Arch
x86_64
keywords: x86_64, x86, abi
- 64bit synonyms:
x86_64
,x64
,amd64
,intel 64
- 32bit synonyms:
x86
,ia32
,i386
- ISA type:
CISC
- Endianness:
little
Registers
General purpose register
bytes
[7:0] [3:0] [1:0] [1] [0] desc
----------------------------------------------------------
rax eax ax ah al accumulator
rbx ebx bx bh bl base register
rcx ecx cx ch cl counter
rdx edx dx dh dl data register
rsi esi si - sil source index
rdi edi di - dil destination index
rbp ebp bp - bpl base pointer
rsp esp sp - spl stack pointer
r8-15 rNd rNw - rNb
Special register
bytes
[7:0] [3:0] [1:0] desc
---------------------------------------------------
rflags eflags flags flags register
rip eip ip instruction pointer
FLAGS register
rflags
bits desc
-----------------------------
[11] OF overflow flag
[10] DF direction flag
[7] SF sign flag
[6] ZF zero flag
[4] AF auxiliary carry flag
[2] PF parity flag
[0] CF carry flag
Addressing
movw [rax], rbx // save val in rbx at [rax]
movw [imm], rbx // save val in rbx at [imm]
movw rax, [rbx+4*rcx] // load val at [rbx+4*rcx] into rax
rip
relative addressing:
lea rax, [rip+.my_str] // load addr of .my_str into rax
...
.my_str:
.asciz "Foo"
Size directives
Explicitly specify size of the operation.
mov byte ptr [rax], 0xff // save 1 byte(s) at [rax]
mov word ptr [rax], 0xff // save 2 byte(s) at [rax]
mov dword ptr [rax], 0xff // save 4 byte(s) at [rax]
mov qword ptr [rax], 0xff // save 8 byte(s) at [rax]
SysV x86_64 ABI
Passing arguments to functions
- Integer/Pointer arguments
reg arg ----------- rdi 1 rsi 2 rdx 3 rcx 4 r8 5 r9 6
- Floating point arguments
reg arg ----------- xmm0 1 .. .. xmm7 7
- Additional arguments are passed on the stack. Arguments are pushed
right-to-left (RTL), meaning next arguments are closer to current
rsp
.
Return values from functions
- Integer/Pointer return values
reg size ----------------- rax 64 bit rax+rdx 128 bit
- Floating point return values:
reg size ------------------- xmm0 64 bit xmm0+xmm1 128 bit
Caller saved registers
Caller must save these registers if they should be preserved across function calls.
rax
rcx
rdx
rsi
rdi
rsp
r8
-r11
Callee saved registers
Caller can expect these registers to be preserved across function calls. Callee must must save these registers in case they are used.
rbx
rbp
r12
–r15
Stack
- grows downwards
- frames aligned on 16 byte boundary
HI ADDR | +------------+ | | prev frame | | +------------+ <--- 16 byte aligned (X & ~0xf) | [rbp+8] | saved RIP | | [rbp] | saved RBP | | [rbp-8] | func stack | | | ... | v +------------+ LO ADDR
ASM skeleton
Small assembler skeleton, ready to use with following properties:
- use raw Linux syscalls (
man 2 syscall
for ABI) - no
C runtime (crt)
- gnu assembler
gas
- intel syntax
# file: greet.s
.intel_syntax noprefix
.section .text, "ax", @progbits
.global _start
_start:
mov rdi, 1 # fd
lea rsi, [rip + greeting] # buf
mov rdx, [rip + greeting_len] # count
mov rax, 1 # write(2) syscall nr
syscall
mov rdi, 0 # exit code
mov rax, 1 # exit(2) syscall nr
syscall
.section .rdonly, "a", @progbits
greeting:
.asciz "Hi ASM-World!\n"
greeting_len:
.int .-greeting
Syscall numbers are defined in
/usr/include/asm/unistd.h
.
To compile and run:
> gcc -o greet greet.s -nostartfiles -nostdlib && ./greet
Hi ASM-World!