ld.so(8)

Environment Variables

  LD_PRELOAD=<l_so>       colon separated list of libso's to be pre loaded
  LD_DEBUG=<opts>         comma separated list of debug options
          =help           list available options
          =libs           show library search path
          =files          processing of input files
          =symbols        show search path for symbol lookup
          =bindings       show against which definition a symbol is bound

LD_PRELOAD: Initialization Order and Link Map

Libraries specified in LD_PRELOAD are loaded from left-to-right but initialized from right-to-left.

  > ldd ./main
    >> libc.so.6 => /usr/lib/libc.so.6

  > LD_PRELOAD=liba.so:libb.so ./main
             -->
      preloaded in this order
             <--
      initialized in this order

The preload order determines:

  • the order libraries are inserted into the link map
  • the initialization order for libraries

For the example listed above the resulting link map will look like the following:

  +------+    +------+    +------+    +------+
  | main | -> | liba | -> | libb | -> | libc |
  +------+    +------+    +------+    +------+

This can be seen when running with LD_DEBUG=files:

  > LD_DEBUG=files LD_PRELOAD=liba.so:libb.so ./main
    # load order (-> determines link map)
    >> file=liba.so [0];  generating link map
    >> file=libb.so [0];  generating link map
    >> file=libc.so.6 [0];  generating link map

    # init order
    >> calling init: /usr/lib/libc.so.6
    >> calling init: <path>/libb.so
    >> calling init: <path>/liba.so
    >> initialize program: ./main

To verify the link map order we let ld.so resolve the memcpy(3) libc symbol (used in main) dynamically, while enabling LD_DEBUG=symbols,bindings to see the resolving in action.

  > LD_DEBUG=symbols,bindings LD_PRELOAD=liba.so:libb.so ./main
    >> symbol=memcpy;  lookup in file=./main [0]
    >> symbol=memcpy;  lookup in file=<path>/liba.so [0]
    >> symbol=memcpy;  lookup in file=<path>/libb.so [0]
    >> symbol=memcpy;  lookup in file=/usr/lib/libc.so.6 [0]
    >> binding file ./main [0] to /usr/lib/libc.so.6 [0]: normal symbol `memcpy' [GLIBC_2.14]

Dynamic Linking (x86_64)

Dynamic linking basically works via one indirect jump. It uses a combination of function trampolines (.plt section) and a function pointer table (.got.plt section). On the first call the trampoline sets up some metadata and then jumps to the ld.so runtime resolve function, which in turn patches the table with the correct function pointer.

  .plt ....... procedure linkage table, contains function trampolines, usually
               located in code segment (rx permission)
  .got.plt ... global offset table for .plt, holds the function pointer table

Using radare2 we can analyze this in more detail:

  [0x00401040]> pd 4 @ section..got.plt
              ;-- section..got.plt:
              ;-- .got.plt:    ; [22] -rw- section size 32 named .got.plt
              ;-- _GLOBAL_OFFSET_TABLE_:
         [0]  0x00404000      .qword 0x0000000000403e10 ; section..dynamic
         [1]  0x00404008      .qword 0x0000000000000000
              ; CODE XREF from section..plt @ +0x6
         [2]  0x00404010      .qword 0x0000000000000000
              ;-- reloc.puts:
              ; CODE XREF from sym.imp.puts @ 0x401030
         [3]  0x00404018      .qword 0x0000000000401036 ; RELOC 64 puts

  [0x00401040]> pd 6 @ section..plt
              ;-- section..plt:
              ;-- .plt:       ; [12] -r-x section size 32 named .plt
          ┌─> 0x00401020      ff35e22f0000   push qword [0x00404008]
          ╎   0x00401026      ff25e42f0000   jmp qword [0x00404010]
          ╎   0x0040102c      0f1f4000       nop dword [rax]
  ┌ 6: int sym.imp.puts (const char *s);
  └       ╎   0x00401030      ff25e22f0000   jmp qword [reloc.puts]
          ╎   0x00401036      6800000000     push 0
          └─< 0x0040103b      e9e0ffffff     jmp sym..plt
  • At address 0x00401030 in the .plt section we see the indirect jump for puts using the function pointer in _GLOBAL_OFFSET_TABLE_[3] (GOT).
  • GOT[3] initially points to instruction after the puts trampoline 0x00401036.
  • This pushes the relocation index 0 and then jumps to the first trampoline 0x00401020.
  • The first trampoline jumps to GOT[2] which will be filled at program startup by the ld.so with its resolve function.
  • The ld.so resolve function fixes the relocation referenced by the relocation index pushed by the puts trampoline.
  • The relocation entry at index 0 tells the resolve function which symbol to search for and where to put the function pointer:
      > readelf -r <main>
        >> Relocation section '.rela.plt' at offset 0x4b8 contains 1 entry:
        >>   Offset          Info           Type           Sym. Value    Sym. Name + Addend
        >> 000000404018  000200000007 R_X86_64_JUMP_SLO 0000000000000000 puts@GLIBC_2.2.5 + 0
    
    As we can see the offset from relocation at index 0 points to GOT[3].

git(1)

staging

  git add -p [<file>] ............ partial staging (interactive)

Remote

  git remote -v .................. list remotes verbose (with URLs)
  git remote show [-n] <remote> .. list info for <remote> (like remote HEAD,
                                   remote branches, tracking mapping)

Branching

  git branch [-a] ................ list available branches; -a to include
                                   remote branches
  git branch -vv ................. list branch & annotate with head sha1 &
                                   remote tracking branch
  git branch <bname> ............. create branch with name <bname>
  git checkout <bname> ........... switch to branch with name <bname>
  git push -u origin <rbname> .... push branch to origin (or other remote), and
                                   setup <rbname> as tracking branch

Resetting

  git reset [opt] <ref|commit>
    opt:
      --mixed .................... resets index, but not working tree
      --hard ..................... matches the working tree and index to that
                                   of the tree being switched to any changes to
                                   tracked files in the working tree since
                                   <commit> are lost
  git reset HEAD <file> .......... remove file from staging
  git reset --soft HEAD~1 ........ delete most recent commit but keep work
  git reset --hard HEAD~1 ........ delete most recent commit and delete work

Tags

  git tag -a <tname> -m "descr" ........ creates an annotated tag (full object
                                         containing tagger, date, ...)
  git tag -l ........................... list available tags
  git checkout tag/<tname> ............. checkout specific tag
  git checkout tag/<tname> -b <bname> .. checkout specific tag in a new branch

Diff

  git diff HEAD:<fname> origin/HEAD:<fname> ... diff files for different refs
  git diff -U$(wc -l <fname>) <fname> ......... shows complete file with diffs
                                                instead of usual diff snippets

Log

  git log --oneline .... shows log in single line per commit -> alias for
                         '--pretty=oneline --abbrev-commit'
  git log --graph ...... text based graph of commit history
  git log --decorate ... decorate log with REFs
  git log -p <file> .... show commit history + diffs for <file>

Patching

  git format-patch <opt> <since>/<revision range>
    opt:
      -N ................... use [PATCH] instead [PATCH n/m] in subject when
                             generating patch description (for patches spanning
                             multiple commits)
      --start-number <n> ... start output file generation with <n> as start
                             number instead '1'
    since spcifier:
      -3 .................. e.g: create a patch from last three commits
      <comit hash> ........ create patch with commits starting after <comit hash>

  git am <patch> ......... apply patch and create a commit for it

  git apply --stat <PATCH> ... see which files the patch would change
  git apply --check <PATCH> .. see if the patch can be applied cleanly
  git apply <PATCH> .......... apply the patch locally without creating a commit

  # eg: generate patches for each commit from initial commit on
  git format-patch -N $(git rev-list --max-parents=0 HEAD)

  # generate single patch file from a certain commit/ref
  git format-patch <COMMIT/REF> --stdout > my-patch.patch

Submodules

  git submodule add <url> [<path>] .......... add new submodule to current project
  git clone --recursive <url> ............... clone project and recursively all
                                              submodules (same as using
                                              'git submodule update --init
                                              --recursive' after clone)
  git submodule update --init --recursive ... checkout submodules recursively
                                              using the commit listed in the
                                              super-project (in detached HEAD)
  git submodule update --remote <submod> .... fetch & merge remote changes for
                                              <submod>, this will pull
                                              origin/HEAD or a branch specified
                                              for the submodule

Inspection

  git ls-tree [-r] <ref> .... show git tree for <ref>, -r to recursively ls sub-trees
  git show <obj> ............ show <obj>
  git cat-file -p <obj> ..... print content of <obj>

Revision Specifier

  HEAD ........ last commit
  HEAD~1 ...... last commit-1
  HEAD~N ...... last commit-N (linear backwards when in tree structure, check
                difference between HEAD^ and HEAD~)
  git rev-list --max-parents=0 HEAD ........... first commit

awk(1)

awk [opt] program [input]
    -F <sepstr>        field separator string (can be regex)
    program            awk program
    input              file or stdin if not file given

Input processing

Input is processed in two stages:

  1. Splitting input into a sequence of records. By default split at newline character, but can be changed via the builtin RS variable.
  2. Splitting a record into fields. By default strings without whitespace, but can be changed via the builtin variable FS or command line option -F.

Field are accessed as follows:

  • $0 whole record
  • $1 field one
  • $2 field two
  • ...

Program

An awk program is composed of pairs of the form:

pattern { action }

The program is run against each record in the input stream. If a pattern matches a record the corresponding action is executed and can access the fields.

INPUT
  |
  v
record ----> ∀ pattern matched
  |                   |
  v                   v
fields ----> run associated action

gdb(1)

CLI

  gdb [opts] [prg [-c coredump | -p pid]]
  gdb [opts] --args prg <prg-args>
    opts:
      -p <pid>        attach to pid
      -c <coredump>   use <coredump>
      -x <file>       execute script <file> before prompt
      -ex <cmd>       execute command <cmd> before prompt
      --tty <tty>     set I/O tty for debugee

Interactive usage

  tty <tty>
          Set <tty> as tty for debugee.
          Make sure nobody reads from target tty, easiest is to spawn a shell
          and run following in target tty:
          > while true; do sleep 1024; done

  set follow-fork-mode <child | parent>
          Specify which process to follow when debuggee makes a fork(2)
          syscall.

  sharedlibrary [<regex>]
          Load symbols of shared libs loaded by debugee. Optionally use <regex>
          to filter libs for symbol loading.

  break [-qualified] <sym> thread <tnum>
          Set a breakpoint only for a specific thread.
          -qualified: Tred <sym> as fully qualified symbol (quiet handy to set
          breakpoints on C symbols in C++ contexts)

  rbreak <regex>
          Set breakpoints matching <regex>, where matching internally is done
          on: .*<regex>.*

  command [<bp_list>]
          Define commands to run after breakpoint hit. If <bp_list> is not
          specified attach command to last created breakpoint. Command block
          terminated with 'end' token.

          <bp_list>: Space separates list, eg 'command 2 5-8' to run command
          for breakpoints: 2,5,6,7,8.

  info functions [<regex>]
          List functions matching <regex>. List all functions if no <regex>
          provided.

  info variables [<regex>]
          List variables matching <regex>. List all variables if no <regex>
          provided.

  info handle [<signal>]
          Print how to handle <signal>. If no <signal> specified print for all
          signals.

  handle <signal> <action>
          Configure how gdb handles <signal> sent to debugee.
          <action>:
            stop/nostop       Catch signal in gdb and break.
            print/noprint     Print message when gdb catches signal.
            pass/nopass       Pass signal down to debugee.

  catch signal <signal>
          Create a catchpoint for <signal>.

User commands (macros)

Gdb allows to create & document user commands as follows:

  define <cmd>
    # cmds
  end

  document <cmd>
    # docu
  end

To get all user commands or documentations one can use:

  help user-defined
  help <cmd>

Hooks

Gdb allows to create two types of command hooks

  • hook- will be run before <cmd>
  • hookpost- will be run after <cmd>
  define hook-<cmd>
    # cmds
  end

  define hookpost-<cmd>
    # cmds
  end

Examples

Catch SIGSEGV and execute commands

This creates a catchpoint for the SIGSEGV signal and attached the command to it.

  catch signal SIGSEGV
  command
    bt
    c
  end

Run backtrace on thread 1 (batch mode)

  gdb --batch -ex 'thread 1' -ex 'bt' -p <pid>

Script gdb for automating debugging sessions

To script gdb add commands into a file and pass it to gdb via -x. For example create run.gdb:

  set pagination off

  break mmap
  command
    info reg rdi rsi rdx
    bt
    c
  end

  #initial drop
  c

This script can be used as:

  gdb --batch -x ./run.gdb -p <pid>

Know Bugs

Workaround command + finish bug

When using finish inside a command block, commands after finish are not executed. To workaround that bug one can create a wrapper function which calls finish.

  define handler
    bt
    finish
    info reg rax
  end

  command
    handler
  end

radare2(1)

print


  pd <n> [@ <addr>]     # print disassembly for <n> instructions
                        # with optional temporary seek to <addr>

flags

  fs            # list flag-spaces
  fs <fs>       # select flag-space <fs>
  f             # print flags of selected flag-space

help

  ?*~<kw>       # '?*' list all commands and '~' grep for <kw>
  ?*~...        # '..' less mode /'...' interactive search

relocation

  > r2 -B <baddr> <exe>         # open <exe> mapped to addr <baddr>
  oob <addr>                    # reopen current file at <baddr>

emacs(1)

help

  C-h f                 describe function
  C-h b                 list buffer available keymaps
  <kseq> C-h            list possible keymaps with <kseq>
                        eg C-x C-h -> list keymaps beginning with C-x

window

  C-x 0         kill focused window
  C-x 1         kill all other windows
  C-x 2         split horizontal
  C-x 3         split vertical

block/rect

  C-x <SPC>                     activate rectangle-mark-mode
  M-x string-rectangle <RET>    insert text in marked rect

mass edit

  C-x h                                 mark whole buffer (mark-whole-buffer)
  M-x delete-matching-line <RET>        delete lines matching regex
  M-x %                                 search & replace region (query-replace)
  C-M-x %                               search & replace regex (query-replace-regexp)

grep

  M-x find-grep <RET>           run find-grep result in *grep* buffer
  n/p                           navigate next/previous match in *grep* buffer

lisp mode

  M-x lisp-interaction-mode     activate lisp mode
  C-M-x                         evaluate top expr under cursor
  C-x C-e                       eval-last-sexp
  C-u C-x C-e                   eval-last-sexp and prints result in current buffer

narrow

  C-x n n               show only focused region (narrow)
  C-x n w               show whole buffer (wide)

org

  M-up/M-down           re-arrange items in same hierarchy
  M-left/M-right        change item hierarchy
  C-RET                 create new item below current
  C-S-RET               create new TODO item below current
  S-left/S-right        cycle TODO states

org source

  <s TAB                generate a source block
  C-c '                 edit source block (in lang specific buffer)
  C-c C-c               eval source block

fish(1)

keymaps

  Shift-Tab ........... tab-completion with search
  Alt-Up / Alt-Down ... search history with token under the cursor
  Alt-l ............... list content of dir under cursor
  Alt-p ............... append '2>&1 | less;' to current cmdline

debug

  status print-stack-trace .. prints function stacktrace (can be used in scripts)
  breakpoint ................ halt script execution and gives shell (C-d | exit
                              to continue)

strace(1)

strace [opts] [prg]
  -f .......... follow child processes on fork(2)
  -p <pid> .... attach to running process
  -s <size> ... max string size, truncate of longer (default: 32)
  -e <expr> ... expression for trace filtering
  -o <file> ... log output into <file>
  -c .......... dump syscall statitics at the end
<expr>:
  trace=syscall[,syscall] .... trace only syscall listed
  trace=file ................. trace all syscall that take a filename as arg
  trace=process .............. trace process management related syscalls
  trace=signal ............... trace signal related syscalls
  signal ..................... trace signals delivered to the process

Examples

Trace open(2) & socket(2) syscalls for a running process + child processes:

strace -f -e trace=open,socket -p <pid>

Trace signals delivered to a running process:

strace -f -e signal -p <pid>

lsof(8)

lsof
  -a ......... AND slection filters instead ORing (OR: default)
  -p <pid> ... filter by <pid>
  +fg ........ show file flags for file descripros
  -n ......... don't convert network addr to hostnames
  -P ......... don't convert network port to service names
  -i <@h[:p]>. show connections to h (hostname|ip addr) with optional port p
file flags:
  R/W/RW ..... read/write/read-write
  CR ......... create
  AP ......... append
  TR ......... truncate

Examples

File flags

Show open files with file flags for process:

lsof +fg -p <pid>

Open TCP connections

Show open tcp connections for $USER:

lsof -a -u $USER -i tcp

Note: -a ands the results. If -a is not given all open files matching $USER and all tcp connections are listed (ored).

Open connection to specific host

Show open connections to localhost for $USER:

lsof -a -u $USER -i @localhost

pidstat(1)

pidstat [opt] [interval] [cont]
  -U [user]     show username instead UID, optionally only show for user
  -r            memory statistics
  -d            I/O statistics
  -h            single line per process and no lines with average

Page fault and memory utilization

pidstat -r -p <pid> [interval] [count]
minor_pagefault: Happens when the page needed is already in memory but not
                 allocated to the faulting process, in that case the kernel
                 only has to create a new page-table entry pointing to the
                 shared physical page (not required to load a memory page from
                 disk).

major_pagefault: Happens when the page needed is NOT in memory, the kernel
                 has to create a new page-table entry and populate the
                 physical page (required to load a memory page from disk).

I/O statistics

pidstat -d -p <pid> [interval] [count]

/usr/bin/time(1)

# statistics of process run
/usr/bin/time -v <cmd>

pgrep(1)

pgrep [opts] <pattern>
  -n         only list newest matching process
  -u <usr>   only show matching for user <usr>
  -l         additionally list command
  -a         additionally list command + arguments

Debug newest process

For example attach gdb to newest zsh process from $USER.

gdb -p $(pgrep -n -u $USER zsh)

pstack(1)

pstack <pid>
    Dump stack for all threads of process.

pstack(1)

pstack <pid>
    Dump stack for all threads of process.

perf(1)

perf list      show supported hw/sw events

perf stat
  -p <pid> .. show stats for running process
  -I <ms> ... show stats periodically over interval <ms>
  -e <ev> ... filter for events

perf top
  -p <pid> .. show stats for running process
  -F <hz> ... sampling frequency
  -K ........ hide kernel threads

perf record
  -p <pid> ............... record stats for running process
  -F <hz> ................ sampling frequency
  --call-graph <method> .. [fp, dwarf, lbr] method how to caputre backtrace
                           fp   : use frame-pointer, need to compile with
                                  -fno-omit-frame-pointer
                           dwarf: use .cfi debug information
                           lbr  : use hardware last branch record facility
  -g ..................... short-hand for --call-graph fp
  -e <ev> ................ filter for events

perf report
  -n .................... annotate symbols with nr of samples
  --stdio ............... report to stdio, if not presen tui mode
  -g graph,0.5,caller ... show caller based call chains with value >0.5
Useful <ev>:
  page-faults
  minor-faults
  major-faults
  cpu-cycles`
  task-clock

Flamegraph

Flamegraph with single event trace

perf record -g -e cpu-cycles -p <pid>
perf script | FlameGraph/stackcollapse-perf.pl | FlameGraph/flamegraph.pl > cycles-flamegraph.svg

Flamegraph with multiple event traces

perf record -g -e cpu-cycles,page-faults -p <pid>
perf script --per-event-dump
# fold & generate as above

OProfile

operf -g -p <pid>
  -g ...... caputre call-graph information

opreport [opt] FILE
            show time spent per binary image
  -l ...... show time spent per symbol
  -c ...... show callgraph information (see below)
  -a ...... add column with time spent accumulated over child nodes

ophelp      show supported hw/sw events

od(1)

  od [opts] <file>
    -An         don't print addr info
    -tx4        print hex in 4 byte chunks
    -ta         print as named character
    -tc         printable chars or backslash escape
    -w4         print 4 bytes per line
    -j <n>      skip <n> bytes from <file> (hex if start with 0x)
    -N <n>      dump <n> bytes (hex of start with 0x)

ASCII to hex string

  echo -n AAAABBBB | od -An -w4 -tx4
    >> 41414141
    >> 42424242

  echo -n '\x7fELF\n' | od -tx1 -ta -tc
    >> 0000000  7f  45  4c  46  0a      # tx1
    >>         del   E   L   F  nl      # ta
    >>         177   E   L   F  \n      # tc

Extract parts of file

For example .rodata section from an elf file. We can use readelf to get the offset into the file where the .rodata section starts.

  readelf -W -S foo
    >> Section Headers:
    >> [Nr] Name              Type            Address          Off    Size   ES Flg Lk Inf Al
    >> ...
    >> [15] .rodata           PROGBITS        00000000004009c0 0009c0 000030 00   A  0   0 16

With the offset of -j 0x0009c0 we can dump -N 0x30 bytes from the beginning of the .rodata section as follows:

  od -j 0x0009c0 -N 0x30 -tx4 -w4 foo
    >> 0004700 00020001
    >> 0004704 00000000
    >> *
    >> 0004740 00000001
    >> 0004744 00000002
    >> 0004750 00000003
    >> 0004754 00000004

Note: Numbers starting with 0x will be interpreted as hex by od.

xxd(1)

  xxd [opts]
    -p          dump continuous hexdump
    -r          convert hexdump into binary ('revert')
    -e          dump as little endian mode
    -i          output as C array

ASCII to hex stream

  echo -n 'aabb' | xxd -p
    >> 61616262

Hex to binary stream

  echo -n '61616262' | xxd -p -r
    >> aabb

ASCII to binary

  echo -n '\x7fELF' | xxd -p | xxd -p -r | file -p -
    >> ELF

ASCII to C array (hex encoded)

  xxd -i <(echo -n '\x7fELF')
    >> unsigned char _proc_self_fd_11[] = {
    >>   0x7f, 0x45, 0x4c, 0x46
    >> };
    >> unsigned int _proc_self_fd_11_len = 4;

readelf(1)

  readelf [opts] <elf>
    -W|--wide     wide output, dont break output at 80 chars
    -h            print ELF header
    -S            print section headers
    -l            print program headers + segment mapping
    -d            print .dynamic section (dynamic link information)
    --syms        print symbol tables (.symtab .dynsym)
    --dyn-syms    print dynamic symbol table (exported symbols for dynamic linker)
    -r            print relocation sections (.rel.*, .rela.*)

objdump(1)

  objdump [opts] <elf>
    -M intel                use intil syntax
    -d                      disassemble text section
    -D                      disassemble all sections
    -S                      mix disassembly with source code
    -C                      demangle
    -j <section>            display info for section
    --[no-]show-raw-insn    [dont] show object code next to disassembly

Disassemble section

For example .plt section:

  objdump -j .plt -d <elf>

nm(1)

  nm [opts] <elf>
    -C          demangle
    -u          undefined only

c++filt(1)

Demangle symbol

  c++-filt <symbol_str>

Demangle stream

For example dynamic symbol table:

  readelf -W --dyn-syms <elf> | c++filt