1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
|
// Copyright (c) 2021 Johannes Stoelp
#include <auxv.h>
#include <common.h>
#include <elf.h>
#include <io.h>
#include <syscalls.h>
#include <stdbool.h>
#include <stdint.h>
// {{{ Global constans
enum {
// Hard-coded page size.
// We assert against the `AT_PAGESZ` auxiliary vector entry.
PAGE_SIZE = 4096,
// Hard-coded upper limit of `DT_NEEDED` entries per dso
// (for simplicity to not require allocations).
MAX_NEEDED = 1,
};
// }}}
// {{{ SystemVDescriptor
typedef struct {
uint64_t argc; // Number of commandline arguments.
const char** argv; // List of pointer to command line arguments.
uint64_t envc; // Number of environment variables.
const char** envv; // List of pointers to environment variables.
uint64_t auxv[AT_MAX_CNT]; // Auxiliary vector entries.
} SystemVDescriptor;
// Interpret and extract data passed on the stack by the Linux Kernel
// when loading the initial process image.
// The data is organized according to the SystemV x86_64 ABI.
static SystemVDescriptor get_systemv_descriptor(const uint64_t* prctx) {
SystemVDescriptor sysv = {0};
sysv.argc = *prctx;
sysv.argv = (const char**)(prctx + 1);
sysv.envv = (const char**)(sysv.argv + sysv.argc + 1);
// Count the number of environment variables in the `ENVP` segment.
for (const char** env = sysv.envv; *env; ++env) {
sysv.envc += 1;
}
// Decode auxiliary vector `AUXV`.
for (const Auxv64Entry* auxvp = (const Auxv64Entry*)(sysv.envv + sysv.envc + 1); auxvp->tag != AT_NULL; ++auxvp) {
if (auxvp->tag < AT_MAX_CNT) {
sysv.auxv[auxvp->tag] = auxvp->val;
}
}
return sysv;
}
// }}}
// {{{ Dso
typedef struct {
uint8_t* base; // Base address.
void (*entry)(); // Entry function.
uint64_t dynamic[DT_MAX_CNT]; // `.dynamic` section entries.
uint64_t needed[MAX_NEEDED]; // Shared object dependencies (`DT_NEEDED` entries).
uint32_t needed_len; // Number of `DT_NEEDED` entries (SO dependencies).
} Dso;
static void decode_dynamic(Dso* dso, uint64_t dynoff) {
// Decode `.dynamic` section of the `dso`.
for (const Elf64Dyn* dyn = (const Elf64Dyn*)(dso->base + dynoff); dyn->tag != DT_NULL; ++dyn) {
if (dyn->tag == DT_NEEDED) {
ERROR_ON(dso->needed_len == MAX_NEEDED, "Too many dso dependencies!");
dso->needed[dso->needed_len++] = dyn->val;
} else if (dyn->tag < DT_MAX_CNT) {
dso->dynamic[dyn->tag] = dyn->val;
}
}
// Check for string table entries.
ERROR_ON(dso->dynamic[DT_STRTAB] == 0, "DT_STRTAB missing in dynamic section!");
ERROR_ON(dso->dynamic[DT_STRSZ] == 0, "DT_STRSZ missing in dynamic section!");
// Check for symbol table entries.
ERROR_ON(dso->dynamic[DT_SYMTAB] == 0, "DT_SYMTAB missing in dynamic section!");
ERROR_ON(dso->dynamic[DT_SYMENT] == 0, "DT_SYMENT missing in dynamic section!");
ERROR_ON(dso->dynamic[DT_SYMENT] != sizeof(Elf64Sym), "ELf64Sym size miss-match!");
// Check for SystemV hash table. We only support SystemV hash tables
// `DT_HASH`, not gnu hash tables `DT_GNU_HASH`.
ERROR_ON(dso->dynamic[DT_HASH] == 0, "DT_HASH missing in dynamic section!");
}
static Dso get_prog_dso(const SystemVDescriptor* sysv) {
Dso prog = {0};
// Determine the base address of the user program.
// We only support the case where the Kernel already mapped the
// user program into the virtual address space and therefore the
// auxiliary vector contains an `AT_PHDR` entry pointing to the
// Program Headers of the user program.
// In that case, the base address of the user program can be
// computed by taking the absolute address of the `AT_PHDR` entry
// and subtracting the relative address `p_vaddr` of the `PT_PHDR`
// entry from the user programs Program Header iself.
//
// VMA
// | |
// PROG BASE -> | | ^
// | | |
// | | | <---------------------+
// | | | |
// AT_PHDR -> +---------+ v |
// | | |
// | | |
// | PT_PHDR | -----> Elf64Phdr { .., vaddr, .. }
// | |
// | |
// +---------+
// | |
//
// PROG BASE = AT_PHDR - PT_PHDR.vaddr
ERROR_ON(sysv->auxv[AT_PHDR] == 0 || sysv->auxv[AT_EXECFD] != 0, "AT_PHDR entry missing in the AUXV!");
// Offset to the `.dynamic` section from the user programs `base addr`.
uint64_t dynoff = 0;
// Program header of the user program.
const Elf64Phdr* phdr = (const Elf64Phdr*)sysv->auxv[AT_PHDR];
ERROR_ON(sysv->auxv[AT_PHENT] != sizeof(Elf64Phdr), "Elf64Phdr size miss-match!");
// Decode PHDRs of the user program.
for (unsigned phdrnum = sysv->auxv[AT_PHNUM]; --phdrnum; ++phdr) {
if (phdr->type == PT_PHDR) {
ERROR_ON(sysv->auxv[AT_PHDR] < phdr->vaddr, "Expectation auxv[AT_PHDR] >= phdr->vaddr failed!");
prog.base = (uint8_t*)(sysv->auxv[AT_PHDR] - phdr->vaddr);
} else if (phdr->type == PT_DYNAMIC) {
dynoff = phdr->vaddr;
}
ERROR_ON(phdr->type == PT_TLS, "Thread local storage not supported found PT_TLS!");
}
ERROR_ON(dynoff == 0, "PT_DYNAMIC entry missing in the user programs PHDR!");
// Decode `.dynamic` section.
decode_dynamic(&prog, dynoff);
// Get the entrypoint of the user program form the auxiliary vector.
ERROR_ON(sysv->auxv[AT_ENTRY] == 0, "AT_ENTRY entry missing in the AUXV!");
prog.entry = (void (*)())sysv->auxv[AT_ENTRY];
return prog;
}
static uint64_t get_num_dynsyms(const Dso* dso) {
ERROR_ON(dso->dynamic[DT_HASH] == 0, "DT_HASH missing in dynamic section!");
// Get SystemV hash table.
const uint32_t* hashtab = (const uint32_t*)(dso->base + dso->dynamic[DT_HASH]);
// SystemV hash table layout:
// nbucket
// nchain
// bucket[nbuckets]
// chain[nchains]
//
// From the SystemV ABI - Dynamic Linking - Hash Table:
// Both `bucket` and `chain` hold symbol table indexes. Chain
// table entries parallel the symbol table. The number of symbol
// table entries should equal `nchain`.
return hashtab[1];
}
static const char* get_str(const Dso* dso, uint64_t idx) {
ERROR_ON(dso->dynamic[DT_STRSZ] < idx, "String table indexed out-of-bounds!");
return (const char*)(dso->base + dso->dynamic[DT_STRTAB] + idx);
}
static const Elf64Sym* get_sym(const Dso* dso, uint64_t idx) {
ERROR_ON(get_num_dynsyms(dso) < idx, "Symbol table index out-of-bounds!");
return (const Elf64Sym*)(dso->base + dso->dynamic[DT_SYMTAB]) + idx;
}
static const Elf64Rela* get_pltreloca(const Dso* dso, uint64_t idx) {
ERROR_ON(dso->dynamic[DT_PLTRELSZ] < sizeof(Elf64Rela) * idx, "PLT relocation table indexed out-of-bounds!");
return (const Elf64Rela*)(dso->base + dso->dynamic[DT_JMPREL]) + idx;
}
static const Elf64Rela* get_reloca(const Dso* dso, uint64_t idx) {
ERROR_ON(dso->dynamic[DT_RELASZ] < sizeof(Elf64Rela) * idx, "RELA relocation table indexed out-of-bounds!");
return (const Elf64Rela*)(dso->base + dso->dynamic[DT_RELA]) + idx;
}
// }}}
// {{{ Init & Fini
typedef void (*initfptr)();
static void init(const Dso* dso) {
if (dso->dynamic[DT_INIT]) {
initfptr* fn = (initfptr*)(dso->base + dso->dynamic[DT_INIT]);
(*fn)();
}
size_t nfns = dso->dynamic[DT_INIT_ARRAYSZ] / sizeof(initfptr);
initfptr* fns = (initfptr*)(dso->base + dso->dynamic[DT_INIT_ARRAY]);
while (nfns--) {
(*fns++)();
}
}
typedef void (*finifptr)();
static void fini(const Dso* dso) {
size_t nfns = dso->dynamic[DT_FINI_ARRAYSZ] / sizeof(finifptr);
finifptr* fns = (finifptr*)(dso->base + dso->dynamic[DT_FINI_ARRAY]) + nfns /* reverse destruction order */;
while (nfns--) {
(*--fns)();
}
if (dso->dynamic[DT_FINI]) {
finifptr* fn = (finifptr*)(dso->base + dso->dynamic[DT_FINI]);
(*fn)();
}
}
// }}}
// {{{ Symbol lookup
static inline int strcmp(const char* s1, const char* s2) {
while (*s1 == *s2 && *s1) {
++s1;
++s2;
}
return *(unsigned char*)s1 - *(unsigned char*)s2;
}
// Perform naive lookup for global symbol and return address if symbol was found.
//
// For simplicity this lookup doesn't use the hash table (`DT_HASH` |
// `DT_GNU_HASH`) but rather iterates of the dynamic symbol table. Using the
// hash table doesn't change the lookup result, however it yields better
// performance for large symbol tables.
//
// `dso` A handle to the dso which dynamic symbol table should be searched.
// `symname` Name of the symbol to look up.
static void* lookup_sym(const Dso* dso, const char* symname) {
for (unsigned i = 0; i < get_num_dynsyms(dso); ++i) {
const Elf64Sym* sym = get_sym(dso, i);
if ((ELF64_ST_TYPE(sym->info) == STT_OBJECT || ELF64_ST_TYPE(sym->info) == STT_FUNC) && ELF64_ST_BIND(sym->info) == STB_GLOBAL &&
sym->shndx != SHN_UNDEF) {
if (strcmp(symname, get_str(dso, sym->name)) == 0) {
return dso->base + sym->value;
}
}
}
return 0;
}
// }}}
// {{{ Map Shared Library Dependency
static Dso map_dependency(const char* dependency) {
// For simplicity we only search for SO dependencies in the current working dir.
// So no support for DT_RPATH/DT_RUNPATH and LD_LIBRARY_PATH.
ERROR_ON(access(dependency, R_OK) != 0, "Dependency '%s' does not exist!\n", dependency);
const int fd = open(dependency, O_RDONLY);
ERROR_ON(fd < 0, "Failed to open '%s'", dependency);
Elf64Ehdr ehdr;
// Read ELF header.
ERROR_ON(read(fd, &ehdr, sizeof(ehdr)) != (ssize_t)sizeof(ehdr), "Failed to read Elf64Ehdr!");
// Check ELF magic.
ERROR_ON(ehdr.ident[EI_MAG0] != '\x7f' || ehdr.ident[EI_MAG1] != 'E' || ehdr.ident[EI_MAG2] != 'L' || ehdr.ident[EI_MAG3] != 'F',
"Dependency '%s' wrong ELF magic value!\n", dependency);
// Check ELF header size.
ERROR_ON(ehdr.ehsize != sizeof(ehdr), "Elf64Ehdr size miss-match!");
// Check for 64bit ELF.
ERROR_ON(ehdr.ident[EI_CLASS] != ELFCLASS64, "Dependency '%s' is not 64bit ELF!\n", dependency);
// Check for OS ABI.
ERROR_ON(ehdr.ident[EI_OSABI] != ELFOSABI_SYSV, "Dependency '%s' is not built for SysV OS ABI!\n", dependency);
// Check ELF type.
ERROR_ON(ehdr.type != ET_DYN, "Dependency '%s' is not a dynamic library!");
// Check for Phdr.
ERROR_ON(ehdr.phnum == 0, "Dependency '%s' has no Phdr!\n", dependency);
Elf64Phdr phdr[ehdr.phnum];
// Check PHDR header size.
ERROR_ON(ehdr.phentsize != sizeof(phdr[0]), "Elf64Phdr size miss-match!");
// Read Program headers at offset `phoff`.
ERROR_ON(pread(fd, &phdr, sizeof(phdr), ehdr.phoff) != (ssize_t)sizeof(phdr), "Failed to read Elf64Phdr[%d]!\n", ehdr.phnum);
// Compute start and end address used by the library based on the all the `PT_LOAD` program headers.
uint64_t dynoff = 0;
uint64_t addr_start = (uint64_t)-1;
uint64_t addr_end = 0;
for (unsigned i = 0; i < ehdr.phnum; ++i) {
const Elf64Phdr* p = &phdr[i];
if (p->type == PT_DYNAMIC) {
// Offset to `.dynamic` section.
dynoff = p->vaddr;
} else if (p->type == PT_LOAD) {
// Find start & end address.
if (p->vaddr < addr_start) {
addr_start = p->vaddr;
} else if (p->vaddr + p->memsz > addr_end) {
addr_end = p->vaddr + p->memsz;
}
}
ERROR_ON(phdr->type == PT_TLS, "Thread local storage not supported found PT_TLS!");
}
// Align start address to the next lower page boundary.
addr_start = addr_start & ~(PAGE_SIZE - 1);
// Align end address to the next higher page boundary.
addr_end = (addr_end + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
// Reserve region big enough to map all `PT_LOAD` sections of `dependency`.
uint8_t* map = mmap(0 /* addr */, addr_end - addr_start /* len */, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS,
-1 /* fd */, 0 /* file offset */);
ERROR_ON(map == MAP_FAILED, "Failed to mmap address space for dependency '%s'\n", dependency);
// Compute base address for library.
uint8_t* base = map - addr_start;
// Map in all `PT_LOAD` segments from the `dependency`.
for (unsigned i = 0; i < ehdr.phnum; ++i) {
const Elf64Phdr* p = &phdr[i];
if (p->type != PT_LOAD) {
continue;
}
// Page align start & end address.
uint64_t addr_start = p->vaddr & ~(PAGE_SIZE - 1);
uint64_t addr_end = (p->vaddr + p->memsz + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
// Page align file offset.
uint64_t off = p->offset & ~(PAGE_SIZE - 1);
// Compute segment permissions.
uint32_t prot = (p->flags & PF_X ? PROT_EXEC : 0) | (p->flags & PF_R ? PROT_READ : 0) | (p->flags & PF_W ? PROT_WRITE : 0);
// Mmap segment.
ERROR_ON(mmap(base + addr_start, addr_end - addr_start, prot, MAP_PRIVATE | MAP_FIXED, fd, off) != base + addr_start,
"Failed to map `PT_LOAD` section %d for dependency '%s'.", i, dependency);
// From the SystemV ABI - Program Headers:
// If the segment’s memorysize (memsz) is larger than the file size (filesz), the "extra" bytes are defined to hold the value
// `0` and to follow the segment’s initialized are
//
// This is typically used by the `.bss` section.
if (p->memsz > p->filesz) {
memset(base + p->vaddr + p->filesz, 0 /* byte */, p->memsz - p->filesz /*len*/);
}
}
// Close file descriptor.
close(fd);
Dso dso = {0};
dso.base = base;
decode_dynamic(&dso, dynoff);
return dso;
}
// }}}
// {{{ Resolve relocations
typedef struct LinkMap {
const Dso* dso; // Pointer to Dso list object.
const struct LinkMap* next; // Pointer to next LinkMap entry ('0' terminates the list).
} LinkMap;
// Resolve a single relocation of `dso`.
//
// Resolve the relocation `reloc` by looking up the address of the symbol
// referenced by the relocation. If the address of the symbol was found the
// relocation is patched, if the address was not found the process exits.
static void resolve_reloc(const Dso* dso, const LinkMap* map, const Elf64Rela* reloc) {
// Get symbol referenced by relocation.
const int symidx = ELF64_R_SYM(reloc->info);
const Elf64Sym* sym = get_sym(dso, symidx);
const char* symname = get_str(dso, sym->name);
// Get relocation typy.
unsigned reloctype = ELF64_R_TYPE(reloc->info);
// Find symbol address.
void* symaddr = 0;
// FIXME: Should relocations of type `R_X86_64_64` only be looked up in `dso` directly?
if (reloctype == R_X86_64_RELATIVE) {
// Symbols address is computed by re-basing the relative address based on the DSOs base address.
symaddr = (void*)(dso->base + reloc->addend);
} else {
// TODO: Explain special handling of R_X86_64_COPY.
for (const LinkMap* lmap = (reloctype == R_X86_64_COPY ? map->next : map); lmap && symaddr == 0; lmap = lmap->next) {
symaddr = lookup_sym(lmap->dso, symname);
}
}
ERROR_ON(symaddr == 0, "Failed lookup symbol %s while resolving relocations!", symname);
pfmt("Resolved reloc %s to %p (base %p)\n", reloctype == R_X86_64_RELATIVE ? "<relative>" : symname, symaddr, dso->base);
// Perform relocation according to relocation type.
switch (reloctype) {
case R_X86_64_GLOB_DAT: /* GOT entry for data objects. */
case R_X86_64_JUMP_SLOT: /* PLT entry. */
case R_X86_64_64: /* 64bit relocation (non-lazy). */
case R_X86_64_RELATIVE: /* DSO base relative relocation. */
// Patch storage unit of relocation with absolute address of the symbol.
*(uint64_t*)(dso->base + reloc->offset) = (uint64_t)symaddr;
break;
case R_X86_64_COPY: /* Reference to global variable in shared ELF file. */
// Copy initial value of variable into relocation address.
memcpy(dso->base + reloc->offset, (void*)symaddr, sym->size);
break;
default:
ERROR_ON(true, "Unsupported relocation type %d!\n", reloctype);
}
}
// Resolve all relocations of `dso`.
//
// Resolve relocations from the PLT & RELA tables. Use `map` as link map which
// defines the order of the symbol lookup.
static void resolve_relocs(const Dso* dso, const LinkMap* map) {
// Resolve all relocation from the RELA table found in `dso`. There is
// typically one relocation per undefined dynamic object symbol (eg global
// variables).
for (unsigned long relocidx = 0; relocidx < (dso->dynamic[DT_RELASZ] / sizeof(Elf64Rela)); ++relocidx) {
const Elf64Rela* reloc = get_reloca(dso, relocidx);
resolve_reloc(dso, map, reloc);
}
// Resolve all relocation from the PLT jump table found in `dso`. There is
// typically one relocation per undefined dynamic function symbol.
for (unsigned long relocidx = 0; relocidx < (dso->dynamic[DT_PLTRELSZ] / sizeof(Elf64Rela)); ++relocidx) {
const Elf64Rela* reloc = get_pltreloca(dso, relocidx);
resolve_reloc(dso, map, reloc);
}
}
// }}}
// {{{ Dynamic Linking (lazy resolve)
// Mark `dynresolve_entry` as `naked` because we want to fully control the
// stack layout.
//
// `noreturn` Function never returns.
// `naked` Don't generate prologue/epilogue sequences.
__attribute__((noreturn)) __attribute__((naked)) static void dynresolve_entry() {
asm("dynresolve_entry:\n\t"
// Pop arguments of PLT0 from the stack into rdi/rsi registers
// These are the first two integer arguments registers as defined by
// the SystemV abi and hence will be passed correctly to `dynresolve`.
"pop %rdi\n\t" // GOT[1] entry (pushed by PLT0 pad).
"pop %rsi\n\t" // Relocation index (pushed by PLT0 pad).
"jmp dynresolve");
}
// `used` Force to emit code for function.
// `unused` Don't warn about unused function.
__attribute__((used)) __attribute__((unused)) static void dynresolve(uint64_t got1, uint64_t reloc_idx) {
ERROR_ON(true,
"ERROR: dynresolve request not supported!"
"\n\tGOT[1] = 0x%x"
"\n\treloc_idx = %d\n",
got1, reloc_idx);
}
// }}}
// {{{ Setup GOT
static void setup_got(const Dso* dso) {
// GOT entries {0, 1, 2} have special meaning for the dynamic link process.
// GOT[0] Hold address of dynamic structure referenced by `_DYNAMIC`.
// GOT[1] Argument pushed by PLT0 pad on stack before jumping to GOT[2],
// can be freely used by dynamic linker to identify the caller.
// GOT[2] Jump target for PLT0 pad when doing dynamic resolve (lazy).
//
// We will not make use of GOT[0]/GOT[1] here but only GOT[2].
// Install dynamic resolve handler. This handler is used when binding
// symbols lazy.
//
// The handler is installed in the `GOT[2]` entry for each DSO object that
// has a GOT. It is jumped to from the `PLT0` pad with the following two
// arguments passed via the stack:
// - GOT[1] entry.
// - Relocation index.
//
// This can be seen in the following disassembly of section .plt:
// PLT0:
// push QWORD PTR [rip+0x3002] # GOT[1]
// jmp QWORD PTR [rip+0x3004] # GOT[2]
// nop DWORD PTR [rax+0x0]
//
// PLT1:
// jmp QWORD PTR [rip+0x3002] # GOT[3]; entry for <PLT1>
// push 0x0 # Relocation index
// jmp 401000 <PLT0>
//
// The handler at GOT[2] can pop the arguments as follows:
// pop %rdi // GOT[1] entry.
// pop %rsi // Relocation index.
if (dso->dynamic[DT_PLTGOT] != 0) {
uint64_t* got = (uint64_t*)(dso->base + dso->dynamic[DT_PLTGOT]);
got[2] = (uint64_t)&dynresolve_entry;
}
}
// }}}
// {{{ Dynamic Linker Entrypoint
void dl_entry(const uint64_t* prctx) {
// Parse SystemV ABI block.
const SystemVDescriptor sysv_desc = get_systemv_descriptor(prctx);
// Ensure hard-coded page size value is correct.
ERROR_ON(sysv_desc.auxv[AT_PAGESZ] != PAGE_SIZE, "Hard-coded PAGE_SIZE miss-match!");
// Initialize dso handle for user program but extracting necesarry
// information from `AUXV` and the `PHDR`.
const Dso dso_prog = get_prog_dso(&sysv_desc);
// Map dependency.
//
// In this chapter the user program should have a single shared
// object dependency, which is our `libgreet.so` no-std shared
// library.
// The `libgreet.so` library itself should not have any dynamic
// dependencies.
ERROR_ON(dso_prog.needed_len != 1, "User program should have exactly one dependency!");
const Dso dso_lib = map_dependency(get_str(&dso_prog, dso_prog.needed[0]));
ERROR_ON(dso_lib.needed_len != 0, "The library should not have any further dependencies!");
// Setup LinkMap.
//
// Create a list of DSOs as link map with the following order:
// main -> libgreet.so
// The link map determines the symbol lookup order.
const LinkMap map_lib = {.dso = &dso_lib, .next = 0};
const LinkMap map_prog = {.dso = &dso_prog, .next = &map_lib};
// Resolve relocations of the library (dependency).
resolve_relocs(&dso_lib, &map_prog);
// Resolve relocations of the main program.
resolve_relocs(&dso_prog, &map_prog);
// Initialize library.
init(&dso_lib);
// Initialize main program.
init(&dso_prog);
// Setup global offset table (GOT).
//
// This installs a dynamic resolve handler, which should not be called in
// this example as we resolve all relocations before transferring control
// to the user program.
// For safety we still install a handler which will terminate the program
// once it is called. If we wouldn't install this handler the program would
// most probably SEGFAULT in case symbol binding would be invoked during
// runtime.
setup_got(&dso_lib);
setup_got(&dso_prog);
// Transfer control to user program.
dso_prog.entry();
// Finalize main program.
fini(&dso_prog);
// Finalize library.
fini(&dso_lib);
_exit(0);
}
// }}}
// vim:fdm=marker
|