aboutsummaryrefslogtreecommitdiffhomepage
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/asm.rs344
-rw-r--r--src/lib.rs366
2 files changed, 346 insertions, 364 deletions
diff --git a/src/asm.rs b/src/asm.rs
new file mode 100644
index 0000000..8ee5fb1
--- /dev/null
+++ b/src/asm.rs
@@ -0,0 +1,344 @@
+//! The `x64` jit assembler.
+
+use crate::*;
+use imm::Imm;
+use reg::Reg;
+
+/// Encode the `REX` byte.
+const fn rex(w: bool, r: u8, x: u8, b: u8) -> u8 {
+ let w = if w { 1 } else { 0 };
+ let r = (r >> 3) & 1;
+ let x = (x >> 3) & 1;
+ let b = (b >> 3) & 1;
+ 0b0100_0000 | ((w & 1) << 3) | (r << 2) | (x << 1) | b
+}
+
+/// Encode the `ModR/M` byte.
+const fn modrm(mod_: u8, reg: u8, rm: u8) -> u8 {
+ ((mod_ & 0b11) << 6) | ((reg & 0b111) << 3) | (rm & 0b111)
+}
+
+/// `x64` jit assembler.
+pub struct Asm {
+ buf: Vec<u8>,
+}
+
+impl Asm {
+ /// Create a new `x64` jit assembler.
+ pub fn new() -> Asm {
+ // Some random default capacity.
+ let buf = Vec::with_capacity(1024);
+ Asm { buf }
+ }
+
+ /// Consume the assembler and get the emitted code.
+ pub fn into_code(self) -> Vec<u8> {
+ self.buf
+ }
+
+ /// Emit a slice of bytes.
+ pub(crate) fn emit(&mut self, bytes: &[u8]) {
+ self.buf.extend_from_slice(bytes);
+ }
+
+ /// Emit a slice of optional bytes.
+ fn emit_optional(&mut self, bytes: &[Option<u8>]) {
+ for byte in bytes.iter().filter_map(|&b| b) {
+ self.buf.push(byte);
+ }
+ }
+
+ /// Emit a slice of bytes at `pos`.
+ ///
+ /// # Panics
+ ///
+ /// Panics if [pos..pos+len] indexes out of bound of the underlying code buffer.
+ fn emit_at(&mut self, pos: usize, bytes: &[u8]) {
+ if let Some(buf) = self.buf.get_mut(pos..pos + bytes.len()) {
+ buf.copy_from_slice(bytes);
+ } else {
+ unimplemented!();
+ }
+ }
+
+ /// Bind the [Label] to the current location.
+ pub fn bind(&mut self, label: &mut Label) {
+ // Bind the label to the current offset.
+ label.bind(self.buf.len());
+
+ // Resolve any pending relocations for the label.
+ self.resolve(label);
+ }
+
+ /// If the [Label] is bound, patch any pending relocation.
+ fn resolve(&mut self, label: &mut Label) {
+ if let Some(loc) = label.location() {
+ // For now we only support disp32 as label location.
+ let loc = i32::try_from(loc).expect("Label location did not fit into i32.");
+
+ // Resolve any pending relocations for the label.
+ for off in label.offsets_mut().drain() {
+ // Displacement is relative to the next instruction following the jump.
+ // We record the offset to patch at the first byte of the disp32 therefore we need
+ // to account for that in the disp computation.
+ let disp32 = loc - i32::try_from(off).expect("Label offset did not fit into i32") - 4 /* account for the disp32 */;
+
+ // Patch the relocation with the disp32.
+ self.emit_at(off, &disp32.to_ne_bytes());
+ }
+ }
+ }
+
+ // -- Encode utilities.
+
+ /// Encode an register-register instruction.
+ pub(crate) fn encode_rr<T: Reg>(&mut self, opc: u8, op1: T, op2: T)
+ where
+ Self: EncodeRR<T>,
+ {
+ // MR operand encoding.
+ // op1 -> modrm.rm
+ // op2 -> modrm.reg
+ let modrm = modrm(
+ 0b11, /* mod */
+ op2.idx(), /* reg */
+ op1.idx(), /* rm */
+ );
+
+ let prefix = <Self as EncodeRR<T>>::legacy_prefix();
+ let rex = <Self as EncodeRR<T>>::rex(op1, op2);
+
+ self.emit_optional(&[prefix, rex]);
+ self.emit(&[opc, modrm]);
+ }
+
+ /// Encode an offset-immediate instruction.
+ /// Register idx is encoded in the opcode.
+ pub(crate) fn encode_oi<T: Reg, U: Imm>(&mut self, opc: u8, op1: T, op2: U)
+ where
+ Self: EncodeR<T>,
+ {
+ let opc = opc + (op1.idx() & 0b111);
+ let prefix = <Self as EncodeR<T>>::legacy_prefix();
+ let rex = <Self as EncodeR<T>>::rex(op1);
+
+ self.emit_optional(&[prefix, rex]);
+ self.emit(&[opc]);
+ self.emit(op2.bytes());
+ }
+
+ /// Encode a register instruction.
+ pub(crate) fn encode_r<T: Reg>(&mut self, opc: u8, opc_ext: u8, op1: T)
+ where
+ Self: EncodeR<T>,
+ {
+ // M operand encoding.
+ // op1 -> modrm.rm
+ // opc extension -> modrm.reg
+ let modrm = modrm(
+ 0b11, /* mod */
+ opc_ext, /* reg */
+ op1.idx(), /* rm */
+ );
+
+ let prefix = <Self as EncodeR<T>>::legacy_prefix();
+ let rex = <Self as EncodeR<T>>::rex(op1);
+
+ self.emit_optional(&[prefix, rex]);
+ self.emit(&[opc, modrm]);
+ }
+
+ /// Encode a memory-immediate instruction.
+ pub(crate) fn encode_mi<T: Imm>(&mut self, opc: u8, opc_ext: u8, op1: MemOp, op2: T)
+ where
+ Self: EncodeMI<T>,
+ {
+ // MI operand encoding.
+ // op1 -> modrm.rm
+ // op2 -> imm
+ let mode = match op1 {
+ MemOp::Indirect(..) => {
+ assert!(!op1.base().need_sib() && !op1.base().is_pc_rel());
+ 0b00
+ }
+ MemOp::IndirectDisp(..) => {
+ assert!(!op1.base().need_sib());
+ 0b10
+ }
+ };
+
+ let modrm = modrm(
+ mode, /* mode */
+ opc_ext, /* reg */
+ op1.base().idx(), /* rm */
+ );
+
+ let prefix = <Self as EncodeMI<T>>::legacy_prefix();
+ let rex = <Self as EncodeMI<T>>::rex(&op1);
+
+ self.emit_optional(&[prefix, rex]);
+ self.emit(&[opc, modrm]);
+ if let MemOp::IndirectDisp(_, disp) = op1 {
+ self.emit(&disp.to_ne_bytes());
+ }
+ self.emit(op2.bytes());
+ }
+
+ /// Encode a memory-register instruction.
+ pub(crate) fn encode_mr<T: Reg>(&mut self, opc: u8, op1: MemOp, op2: T)
+ where
+ Self: EncodeMR<T>,
+ {
+ // MR operand encoding.
+ // op1 -> modrm.rm
+ // op2 -> modrm.reg
+ let mode = match op1 {
+ MemOp::Indirect(..) => {
+ assert!(!op1.base().need_sib() && !op1.base().is_pc_rel());
+ 0b00
+ }
+ MemOp::IndirectDisp(..) => {
+ assert!(!op1.base().need_sib());
+ 0b10
+ }
+ };
+
+ let modrm = modrm(
+ mode, /* mode */
+ op2.idx(), /* reg */
+ op1.base().idx(), /* rm */
+ );
+ let prefix = <Self as EncodeMR<T>>::legacy_prefix();
+ let rex = <Self as EncodeMR<T>>::rex(&op1, op2);
+
+ self.emit_optional(&[prefix, rex]);
+ self.emit(&[opc, modrm]);
+ if let MemOp::IndirectDisp(_, disp) = op1 {
+ self.emit(&disp.to_ne_bytes());
+ }
+ }
+
+ /// Encode a register-memory instruction.
+ pub(crate) fn encode_rm<T: Reg>(&mut self, opc: u8, op1: T, op2: MemOp)
+ where
+ Self: EncodeMR<T>,
+ {
+ // RM operand encoding.
+ // op1 -> modrm.reg
+ // op2 -> modrm.rm
+ self.encode_mr(opc, op2, op1);
+ }
+
+ /// Encode a jump to label instruction.
+ pub(crate) fn encode_jmp_label(&mut self, opc: &[u8], op1: &mut Label) {
+ // Emit the opcode.
+ self.emit(opc);
+
+ // Record relocation offset starting at the first byte of the disp32.
+ op1.record_offset(self.buf.len());
+
+ // Emit a zeroed disp32, which serves as placeholder for the relocation.
+ // We currently only support disp32 jump targets.
+ self.emit(&[0u8; 4]);
+
+ // Resolve any pending relocations for the label.
+ self.resolve(op1);
+ }
+}
+
+// -- Encoder helper.
+
+/// Encode helper for register-register instructions.
+pub(crate) trait EncodeRR<T: Reg> {
+ fn legacy_prefix() -> Option<u8> {
+ None
+ }
+
+ fn rex(op1: T, op2: T) -> Option<u8> {
+ if op1.need_rex() || op2.need_rex() {
+ Some(rex(op1.rexw(), op2.idx(), 0, op1.idx()))
+ } else {
+ None
+ }
+ }
+}
+
+impl EncodeRR<Reg8> for Asm {}
+impl EncodeRR<Reg32> for Asm {}
+impl EncodeRR<Reg16> for Asm {
+ fn legacy_prefix() -> Option<u8> {
+ Some(0x66)
+ }
+}
+impl EncodeRR<Reg64> for Asm {}
+
+/// Encode helper for register instructions.
+pub(crate) trait EncodeR<T: Reg> {
+ fn legacy_prefix() -> Option<u8> {
+ None
+ }
+
+ fn rex(op1: T) -> Option<u8> {
+ if op1.need_rex() {
+ Some(rex(op1.rexw(), 0, 0, op1.idx()))
+ } else {
+ None
+ }
+ }
+}
+
+impl EncodeR<Reg8> for Asm {}
+impl EncodeR<Reg32> for Asm {}
+impl EncodeR<Reg16> for Asm {
+ fn legacy_prefix() -> Option<u8> {
+ Some(0x66)
+ }
+}
+impl EncodeR<Reg64> for Asm {}
+
+/// Encode helper for memory-register instructions.
+pub(crate) trait EncodeMR<T: Reg> {
+ fn legacy_prefix() -> Option<u8> {
+ None
+ }
+
+ fn rex(op1: &MemOp, op2: T) -> Option<u8> {
+ if op2.need_rex() || (op1.base().is_ext()) {
+ Some(rex(op2.rexw(), op2.idx(), 0, op1.base().idx()))
+ } else {
+ None
+ }
+ }
+}
+
+impl EncodeMR<Reg8> for Asm {}
+impl EncodeMR<Reg16> for Asm {
+ fn legacy_prefix() -> Option<u8> {
+ Some(0x66)
+ }
+}
+impl EncodeMR<Reg32> for Asm {}
+impl EncodeMR<Reg64> for Asm {}
+
+/// Encode helper for memory-immediate instructions.
+pub(crate) trait EncodeMI<T: Imm> {
+ fn legacy_prefix() -> Option<u8> {
+ None
+ }
+
+ fn rex(op1: &MemOp) -> Option<u8> {
+ if op1.base().is_ext() {
+ Some(rex(false, 0, 0, op1.base().idx()))
+ } else {
+ None
+ }
+ }
+}
+
+impl EncodeMI<Imm8> for Asm {}
+impl EncodeMI<Imm16> for Asm {
+ fn legacy_prefix() -> Option<u8> {
+ Some(0x66)
+ }
+}
+impl EncodeMI<Imm32> for Asm {}
diff --git a/src/lib.rs b/src/lib.rs
index 65d70b5..3b7b832 100644
--- a/src/lib.rs
+++ b/src/lib.rs
@@ -73,6 +73,7 @@
//! }
//! ```
+mod asm;
mod imm;
mod label;
mod reg;
@@ -80,14 +81,12 @@ mod rt;
pub mod insn;
+pub use asm::Asm;
pub use imm::{Imm16, Imm32, Imm64, Imm8};
pub use label::Label;
pub use reg::{Reg16, Reg32, Reg64, Reg8};
pub use rt::Runtime;
-use imm::Imm;
-use reg::Reg;
-
/// Type representing a memory operand.
pub enum MemOp {
/// An indirect memory operand, eg `mov [rax], rcx`.
@@ -106,364 +105,3 @@ impl MemOp {
}
}
}
-
-/// Encode the `REX` byte.
-const fn rex(w: bool, r: u8, x: u8, b: u8) -> u8 {
- let w = if w { 1 } else { 0 };
- let r = (r >> 3) & 1;
- let x = (x >> 3) & 1;
- let b = (b >> 3) & 1;
- 0b0100_0000 | ((w & 1) << 3) | (r << 2) | (x << 1) | b
-}
-
-/// Encode the `ModR/M` byte.
-const fn modrm(mod_: u8, reg: u8, rm: u8) -> u8 {
- ((mod_ & 0b11) << 6) | ((reg & 0b111) << 3) | (rm & 0b111)
-}
-
-/// `x64` jit assembler.
-pub struct Asm {
- buf: Vec<u8>,
-}
-
-impl Asm {
- /// Create a new `x64` jit assembler.
- pub fn new() -> Asm {
- // Some random default capacity.
- let buf = Vec::with_capacity(1024);
- Asm { buf }
- }
-
- /// Consume the assembler and get the emitted code.
- pub fn into_code(self) -> Vec<u8> {
- self.buf
- }
-
- /// Emit a slice of bytes.
- fn emit(&mut self, bytes: &[u8]) {
- self.buf.extend_from_slice(bytes);
- }
-
- /// Emit a slice of optional bytes.
- fn emit_optional(&mut self, bytes: &[Option<u8>]) {
- for byte in bytes.iter().filter_map(|&b| b) {
- self.buf.push(byte);
- }
- }
-
- /// Emit a slice of bytes at `pos`.
- ///
- /// # Panics
- ///
- /// Panics if [pos..pos+len] indexes out of bound of the underlying code buffer.
- fn emit_at(&mut self, pos: usize, bytes: &[u8]) {
- if let Some(buf) = self.buf.get_mut(pos..pos + bytes.len()) {
- buf.copy_from_slice(bytes);
- } else {
- unimplemented!();
- }
- }
-
- /// Bind the [Label] to the current location.
- pub fn bind(&mut self, label: &mut Label) {
- // Bind the label to the current offset.
- label.bind(self.buf.len());
-
- // Resolve any pending relocations for the label.
- self.resolve(label);
- }
-
- /// If the [Label] is bound, patch any pending relocation.
- pub fn resolve(&mut self, label: &mut Label) {
- if let Some(loc) = label.location() {
- // For now we only support disp32 as label location.
- let loc = i32::try_from(loc).expect("Label location did not fit into i32.");
-
- // Resolve any pending relocations for the label.
- for off in label.offsets_mut().drain() {
- // Displacement is relative to the next instruction following the jump.
- // We record the offset to patch at the first byte of the disp32 therefore we need
- // to account for that in the disp computation.
- let disp32 = loc - i32::try_from(off).expect("Label offset did not fit into i32") - 4 /* account for the disp32 */;
-
- // Patch the relocation with the disp32.
- self.emit_at(off, &disp32.to_ne_bytes());
- }
- }
- }
-
- // -- Encode utilities.
-
- /// Encode an register-register instruction.
- fn encode_rr<T: Reg>(&mut self, opc: u8, op1: T, op2: T)
- where
- Self: EncodeRR<T>,
- {
- // MR operand encoding.
- // op1 -> modrm.rm
- // op2 -> modrm.reg
- let modrm = modrm(
- 0b11, /* mod */
- op2.idx(), /* reg */
- op1.idx(), /* rm */
- );
-
- let prefix = <Self as EncodeRR<T>>::legacy_prefix();
- let rex = <Self as EncodeRR<T>>::rex(op1, op2);
-
- self.emit_optional(&[prefix, rex]);
- self.emit(&[opc, modrm]);
- }
-
- /// Encode an offset-immediate instruction.
- /// Register idx is encoded in the opcode.
- fn encode_oi<T: Reg, U: Imm>(&mut self, opc: u8, op1: T, op2: U)
- where
- Self: EncodeR<T>,
- {
- let opc = opc + (op1.idx() & 0b111);
- let prefix = <Self as EncodeR<T>>::legacy_prefix();
- let rex = <Self as EncodeR<T>>::rex(op1);
-
- self.emit_optional(&[prefix, rex]);
- self.emit(&[opc]);
- self.emit(op2.bytes());
- }
-
- /// Encode a register-immediate instruction.
- fn encode_ri<T: Reg, U: Imm>(&mut self, opc: u8, opc_ext: u8, op1: T, op2: U)
- where
- Self: EncodeR<T>,
- {
- // MI operand encoding.
- // op1 -> modrm.rm
- // opc extension -> modrm.reg
- let modrm = modrm(
- 0b11, /* mod */
- opc_ext, /* reg */
- op1.idx(), /* rm */
- );
-
- let prefix = <Self as EncodeR<T>>::legacy_prefix();
- let rex = <Self as EncodeR<T>>::rex(op1);
-
- self.emit_optional(&[prefix, rex]);
- self.emit(&[opc, modrm]);
- self.emit(op2.bytes());
- }
-
- /// Encode a register instruction.
- fn encode_r<T: Reg>(&mut self, opc: u8, opc_ext: u8, op1: T)
- where
- Self: EncodeR<T>,
- {
- // M operand encoding.
- // op1 -> modrm.rm
- // opc extension -> modrm.reg
- let modrm = modrm(
- 0b11, /* mod */
- opc_ext, /* reg */
- op1.idx(), /* rm */
- );
-
- let prefix = <Self as EncodeR<T>>::legacy_prefix();
- let rex = <Self as EncodeR<T>>::rex(op1);
-
- self.emit_optional(&[prefix, rex]);
- self.emit(&[opc, modrm]);
- }
-
- /// Encode a memory-immediate instruction.
- fn encode_mi<T: Imm>(&mut self, opc: u8, opc_ext: u8, op1: MemOp, op2: T)
- where
- Self: EncodeMI<T>,
- {
- // MI operand encoding.
- // op1 -> modrm.rm
- // op2 -> imm
- let mode = match op1 {
- MemOp::Indirect(..) => {
- assert!(!op1.base().need_sib() && !op1.base().is_pc_rel());
- 0b00
- }
- MemOp::IndirectDisp(..) => {
- assert!(!op1.base().need_sib());
- 0b10
- }
- };
-
- let modrm = modrm(
- mode, /* mode */
- opc_ext, /* reg */
- op1.base().idx(), /* rm */
- );
-
- let prefix = <Self as EncodeMI<T>>::legacy_prefix();
- let rex = <Self as EncodeMI<T>>::rex(&op1);
-
- self.emit_optional(&[prefix, rex]);
- self.emit(&[opc, modrm]);
- if let MemOp::IndirectDisp(_, disp) = op1 {
- self.emit(&disp.to_ne_bytes());
- }
- self.emit(op2.bytes());
- }
-
- /// Encode a memory-register instruction.
- fn encode_mr<T: Reg>(&mut self, opc: u8, op1: MemOp, op2: T)
- where
- Self: EncodeMR<T>,
- {
- // MR operand encoding.
- // op1 -> modrm.rm
- // op2 -> modrm.reg
- let mode = match op1 {
- MemOp::Indirect(..) => {
- assert!(!op1.base().need_sib() && !op1.base().is_pc_rel());
- 0b00
- }
- MemOp::IndirectDisp(..) => {
- assert!(!op1.base().need_sib());
- 0b10
- }
- };
-
- let modrm = modrm(
- mode, /* mode */
- op2.idx(), /* reg */
- op1.base().idx(), /* rm */
- );
- let prefix = <Self as EncodeMR<T>>::legacy_prefix();
- let rex = <Self as EncodeMR<T>>::rex(&op1, op2);
-
- self.emit_optional(&[prefix, rex]);
- self.emit(&[opc, modrm]);
- if let MemOp::IndirectDisp(_, disp) = op1 {
- self.emit(&disp.to_ne_bytes());
- }
- }
-
- /// Encode a register-memory instruction.
- fn encode_rm<T: Reg>(&mut self, opc: u8, op1: T, op2: MemOp)
- where
- Self: EncodeMR<T>,
- {
- // RM operand encoding.
- // op1 -> modrm.reg
- // op2 -> modrm.rm
- self.encode_mr(opc, op2, op1);
- }
-
- /// Encode a jump to label instruction.
- fn encode_jmp_label(&mut self, opc: &[u8], op1: &mut Label) {
- // Emit the opcode.
- self.emit(opc);
-
- // Record relocation offset starting at the first byte of the disp32.
- op1.record_offset(self.buf.len());
-
- // Emit a zeroed disp32, which serves as placeholder for the relocation.
- // We currently only support disp32 jump targets.
- self.emit(&[0u8; 4]);
-
- // Resolve any pending relocations for the label.
- self.resolve(op1);
- }
-}
-
-// -- Encoder helper.
-
-/// Encode helper for register-register instructions.
-trait EncodeRR<T: Reg> {
- fn legacy_prefix() -> Option<u8> {
- None
- }
-
- fn rex(op1: T, op2: T) -> Option<u8> {
- if op1.need_rex() || op2.need_rex() {
- Some(rex(op1.rexw(), op2.idx(), 0, op1.idx()))
- } else {
- None
- }
- }
-}
-
-impl EncodeRR<Reg8> for Asm {}
-impl EncodeRR<Reg32> for Asm {}
-impl EncodeRR<Reg16> for Asm {
- fn legacy_prefix() -> Option<u8> {
- Some(0x66)
- }
-}
-impl EncodeRR<Reg64> for Asm {}
-
-/// Encode helper for register instructions.
-trait EncodeR<T: Reg> {
- fn legacy_prefix() -> Option<u8> {
- None
- }
-
- fn rex(op1: T) -> Option<u8> {
- if op1.need_rex() {
- Some(rex(op1.rexw(), 0, 0, op1.idx()))
- } else {
- None
- }
- }
-}
-
-impl EncodeR<Reg8> for Asm {}
-impl EncodeR<Reg32> for Asm {}
-impl EncodeR<Reg16> for Asm {
- fn legacy_prefix() -> Option<u8> {
- Some(0x66)
- }
-}
-impl EncodeR<Reg64> for Asm {}
-
-/// Encode helper for memory-register instructions.
-trait EncodeMR<T: Reg> {
- fn legacy_prefix() -> Option<u8> {
- None
- }
-
- fn rex(op1: &MemOp, op2: T) -> Option<u8> {
- if op2.need_rex() || (op1.base().is_ext()) {
- Some(rex(op2.rexw(), op2.idx(), 0, op1.base().idx()))
- } else {
- None
- }
- }
-}
-
-impl EncodeMR<Reg8> for Asm {}
-impl EncodeMR<Reg16> for Asm {
- fn legacy_prefix() -> Option<u8> {
- Some(0x66)
- }
-}
-impl EncodeMR<Reg32> for Asm {}
-impl EncodeMR<Reg64> for Asm {}
-
-/// Encode helper for memory-immediate instructions.
-trait EncodeMI<T: Imm> {
- fn legacy_prefix() -> Option<u8> {
- None
- }
-
- fn rex(op1: &MemOp) -> Option<u8> {
- if op1.base().is_ext() {
- Some(rex(false, 0, 0, op1.base().idx()))
- } else {
- None
- }
- }
-}
-
-impl EncodeMI<Imm8> for Asm {}
-impl EncodeMI<Imm16> for Asm {
- fn legacy_prefix() -> Option<u8> {
- Some(0x66)
- }
-}
-impl EncodeMI<Imm32> for Asm {}