1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
//! Brainfuck VM.
//!
//! This example implements a simple
//! [brainfuck](https://en.wikipedia.org/wiki/Brainfuck) interpreter
//! [`BrainfuckInterp`] and a jit compiler [`BrainfuckJit`].
//!
//! Brainfuck is an esoteric programming languge existing of 8 commands.
//! - `>` increment data pointer.
//! - `<` decrement data pointer.
//! - `+` increment data at current data pointer.
//! - `-` decrement data at current data pointer.
//! - `.` output data at current data pointer.
//! - `,` read input and store at current data pointer.
//! - `[` jump behind matching ']' if data at data pointer is zero.
//! - `]` jump behind matching '[' if data at data pointer is non-zero.
use std::collections::HashMap;
use std::io::Write;
use juicebox_asm::insn::*;
use juicebox_asm::Runtime;
use juicebox_asm::{Asm, Imm64, Imm8, Label, Mem8, Reg64, Reg8};
// -- BRAINFUCK INTERPRETER ----------------------------------------------------
struct BrainfuckInterp {
pc: usize,
imem: Vec<char>,
dptr: usize,
dmem: [u8; 256],
branches: HashMap<usize, usize>,
}
impl BrainfuckInterp {
fn new(prog: &str) -> Result<Self, String> {
// Do a first pass over the bf program to filter whitespace and detect
// invalid tokens. Additionally validate all conditional branches, and
// compute their branch target.
let (imem, branches) = {
// Instruction memory holding the final bf program.
let mut imem = Vec::new();
// Helper to track index of open brackets.
let mut lhs_brackets = Vec::new();
// Mapping from branch instruction to branch target.
let mut branches = HashMap::new();
for (idx, token) in prog.chars().filter(|c| !c.is_whitespace()).enumerate() {
match token {
'<' | '>' | '+' | '-' | '.' | ',' => { /* ignore valid bf tokens */ }
'[' => lhs_brackets.push(idx),
']' => {
if let Some(lhs) = lhs_brackets.pop() {
branches.insert(lhs, idx);
branches.insert(idx, lhs);
} else {
return Err(format!("encountered un-balanced brackets, found ']' at index {idx} without matching '['"));
}
}
_ => return Err(format!("invalid bf token '{token}'")),
}
imem.push(token)
}
if !lhs_brackets.is_empty() {
return Err(String::from(
"encountered un-balanced brackets, left-over '[' after parsing bf program",
));
}
(imem, branches)
};
Ok(BrainfuckInterp {
pc: 0,
imem,
dptr: 0,
dmem: [0; 256],
branches,
})
}
}
fn run_interp(prog: &str) {
let mut vm = BrainfuckInterp::new(prog).unwrap();
loop {
let insn = match vm.imem.get(vm.pc) {
Some(insn) => insn,
None => break, // End of bf program.
};
let putchar = |val: u8| {
std::io::stdout()
.write(&[val])
.expect("Failed to write to stdout!");
};
match insn {
'>' => {
vm.dptr += 1;
assert!(vm.dptr < vm.dmem.len());
}
'<' => {
assert!(vm.dptr > 0);
vm.dptr -= 1;
}
'+' => {
vm.dmem[vm.dptr] += 1;
}
'-' => {
vm.dmem[vm.dptr] -= 1;
}
'.' => {
putchar(vm.dmem[vm.dptr]);
}
',' => {
unimplemented!("getchar");
}
'[' => {
if vm.dmem[vm.dptr] == 0 {
vm.pc = *vm.branches.get(&vm.pc).unwrap();
}
}
']' => {
if vm.dmem[vm.dptr] != 0 {
vm.pc = *vm.branches.get(&vm.pc).unwrap();
}
}
_ => unreachable!(),
}
vm.pc += 1;
}
}
// -- BRAINFUCK JIT ------------------------------------------------------------
#[cfg(not(any(target_arch = "x86_64", target_os = "linux")))]
compile_error!("Only supported on x86_64 with SystemV abi");
struct BrainfuckJit {
imem: Vec<char>,
dmem: [u8; 256],
}
impl BrainfuckJit {
fn new(prog: &str) -> Result<Self, String> {
// Do a first pass over the bf program to filter whitespace and detect
// invalid tokens.
let imem = prog
.chars()
.filter(|c| !c.is_whitespace())
.map(|c| match c {
'<' | '>' | '+' | '-' | '.' | ',' | '[' | ']' => Ok(c),
_ => Err(format!("invalid bf token '{c}'")),
})
.collect::<Result<Vec<char>, String>>()?;
Ok(BrainfuckJit {
imem,
dmem: [0; 256],
})
}
}
extern "C" fn putchar(c: u8) {
std::io::stdout()
.write(&[c])
.expect("Failed to write to stdout!");
}
fn run_jit(prog: &str) {
let mut vm = BrainfuckJit::new(prog).unwrap();
// Use callee saved registers to hold vm state, such that we don't need to
// save any state before calling out to putchar.
let dmem_base = Reg64::rbx;
let dmem_size = Reg64::r12;
let dmem_idx = Reg64::r13;
let mut asm = Asm::new();
// Save callee saved registers before we tamper them.
asm.push(dmem_base);
asm.push(dmem_size);
asm.push(dmem_idx);
// Move data memory pointer (argument on jit entry) into correct register.
asm.mov(dmem_base, Reg64::rdi);
// Move data memory size into correct register.
asm.mov(dmem_size, Reg64::rsi);
// Clear data memory index.
asm.xor(dmem_idx, dmem_idx);
// A stack of label pairs, used to link up forward and backward jumps for a
// given '[]' pair.
let mut label_stack = Vec::new();
// Label to jump to when a data pointer overflow is detected.
let mut oob_ov = Label::new();
// Label to jump to when a data pointer underflow is detected.
let mut oob_uv = Label::new();
// Generate code for each instruction in the bf program.
let mut pc = 0;
while pc < vm.imem.len() {
match vm.imem[pc] {
'>' => {
asm.inc(dmem_idx);
// Check for data pointer overflow and jump to error handler if needed.
asm.cmp(dmem_idx, dmem_size);
asm.jz(&mut oob_ov);
}
'<' => {
// Check for data pointer underflow and jump to error handler if needed.
asm.test(dmem_idx, dmem_idx);
asm.jz(&mut oob_uv);
asm.dec(dmem_idx);
}
'+' => {
// Apply optimization to fold consecutive '+' instructions to a
// single add instruction during compile time.
match vm.imem[pc..].iter().take_while(|&&i| i.eq(&'+')).count() {
1 => {
asm.inc(Mem8::indirect_base_index(dmem_base, dmem_idx));
}
cnt if cnt <= u8::MAX as usize => {
asm.add(
Mem8::indirect_base_index(dmem_base, dmem_idx),
Imm8::from(cnt as u8),
);
// Advance pc, but account for pc increment at the end
// of the loop.
pc += cnt - 1;
}
cnt @ _ => unimplemented!("cnt={cnt} oob, add with larger imm"),
}
}
'-' => {
// Apply optimization to fold consecutive '-' instructions to a
// single sub instruction during compile time.
match vm.imem[pc..].iter().take_while(|&&i| i.eq(&'-')).count() {
1 => {
asm.dec(Mem8::indirect_base_index(dmem_base, dmem_idx));
}
cnt if cnt <= u8::MAX as usize => {
asm.sub(
Mem8::indirect_base_index(dmem_base, dmem_idx),
Imm8::from(cnt as u8),
);
// Advance pc, but account for pc increment at the end
// of the loop.
pc += cnt - 1;
}
cnt @ _ => unimplemented!("cnt={cnt} oob, sub with larger imm"),
}
}
'.' => {
// Load data memory from active cell into di register, which is
// the first argument register according to the SystemV abi,
// then call into putchar. Since we stored all out vm state in
// callee saved registers we don't need to save any registers
// before the call.
asm.mov(Reg8::dil, Mem8::indirect_base_index(dmem_base, dmem_idx));
asm.mov(Reg64::rax, Imm64::from(putchar as usize));
asm.call(Reg64::rax);
}
',' => {
unimplemented!("getchar");
}
'[' => {
// Create new label pair.
label_stack.push((Label::new(), Label::new()));
// UNWRAP: We just pushed a new entry on the stack.
let label_pair = label_stack.last_mut().unwrap();
// Goto label_pair.0 if data memory at active cell is 0.
// if vm.dmem[vm.dptr] == 0 goto label_pair.0
asm.cmp(
Mem8::indirect_base_index(dmem_base, dmem_idx),
Imm8::from(0u8),
);
asm.jz(&mut label_pair.0);
// Bind label_pair.1 after the jump instruction, which will be
// the branch target for the matching ']'.
asm.bind(&mut label_pair.1);
}
']' => {
let mut label_pair = label_stack
.pop()
.expect("encountered un-balanced brackets, found ']' without matching '['");
// Goto label_pair.1 if data memory at active cell is not 0.
// if vm.dmem[vm.dptr] != 0 goto label_pair.1
asm.cmp(
Mem8::indirect_base_index(dmem_base, dmem_idx),
Imm8::from(0u8),
);
asm.jnz(&mut label_pair.1);
// Bind label_pair.0 after the jump instruction, which is the
// branch target for the matching '['.
asm.bind(&mut label_pair.0);
}
_ => unreachable!(),
}
// Increment pc to next instruction.
pc += 1;
}
let mut ret_epilogue = Label::new();
// Successful return from bf program.
asm.xor(Reg64::rax, Reg64::rax);
asm.bind(&mut ret_epilogue);
// Restore callee saved registers before returning from jit.
asm.pop(dmem_idx);
asm.pop(dmem_size);
asm.pop(dmem_base);
asm.ret();
// Return because of data pointer overflow.
asm.bind(&mut oob_ov);
asm.mov(Reg64::rax, Imm64::from(1));
asm.jmp(&mut ret_epilogue);
// Return because of data pointer underflow.
asm.bind(&mut oob_uv);
asm.mov(Reg64::rax, Imm64::from(2));
asm.jmp(&mut ret_epilogue);
if !label_stack.is_empty() {
panic!("encountered un-balanced brackets, left-over '[' after jitting bf program")
}
// Get function pointer to jitted bf program.
let mut rt = Runtime::new();
let bf_entry = unsafe { rt.add_code::<extern "C" fn(*mut u8, usize) -> u64>(asm.into_code()) };
// Execute jitted bf program.
match bf_entry(&mut vm.dmem as *mut u8, vm.dmem.len()) {
0 => {}
1 => panic!("oob: data pointer overflow"),
2 => panic!("oob: data pointer underflow"),
_ => unreachable!(),
}
}
// -- MAIN ---------------------------------------------------------------------
fn main() {
// https://en.wikipedia.org/wiki/Brainfuck#Hello_World!
let inp = "++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+[<]<-]>>.>---.+++++++..+++.>>.<-.<.+++.------.--------.>>+.>++.";
println!("hello-world (wikipedia.org) - interp");
run_interp(inp);
println!("hello-world (wikipedia.org) - jit");
run_jit(inp);
// https://programmingwiki.de/Brainfuck
let inp = ">+++++++++[<++++++++>-]<.>+++++++[<++++>-]<+.+++++++..+++.[-]>++++++++[<++++>-] <.>+++++++++++[<++++++++>-]<-.--------.+++.------.--------.[-]>++++++++[<++++>- ]<+.[-]++++++++++.";
println!("hello-world (programmingwiki.de) - interp");
run_interp(inp);
println!("hello-world (programmingwiki.de) - jit");
run_jit(inp);
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn data_ptr_no_overflow() {
let inp = std::iter::repeat('>').take(255).collect::<String>();
run_jit(&inp);
}
#[test]
#[should_panic]
fn data_ptr_overflow() {
let inp = std::iter::repeat('>').take(255 + 1).collect::<String>();
run_jit(&inp);
}
#[test]
fn data_ptr_no_underflow() {
let inp = ">><< ><";
run_jit(inp);
}
#[test]
#[should_panic]
fn data_ptr_underflow() {
let inp = ">><< >< <";
run_jit(&inp);
}
}
|