1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
|
//! Brainfuck VM.
//!
//! This example implements a simple
//! [brainfuck](https://en.wikipedia.org/wiki/Brainfuck) interpreter
//! [`BrainfuckInterp`] and a jit compiler [`BrainfuckJit`].
//!
//! Brainfuck is an esoteric programming languge existing of 8 commands.
//! - `>` increment data pointer.
//! - `<` decrement data pointer.
//! - `+` increment data at current data pointer.
//! - `-` decrement data at current data pointer.
//! - `.` output data at current data pointer.
//! - `,` read input and store at current data pointer.
//! - `[` jump behind matching ']' if data at data pointer is zero.
//! - `]` jump behind matching '[' if data at data pointer is non-zero.
use std::collections::HashMap;
use std::io::Write;
use juicebox_asm::insn::*;
use juicebox_asm::Runtime;
use juicebox_asm::{Asm, Imm64, Imm8, Label, Mem8, Reg64, Reg8};
// -- BRAINFUCK INTERPRETER ----------------------------------------------------
struct BrainfuckInterp {
pc: usize,
imem: Vec<char>,
dptr: usize,
dmem: [u8; 256],
branches: HashMap<usize, usize>,
}
impl BrainfuckInterp {
fn new(prog: &str) -> Result<Self, String> {
// Do a first pass over the bf program to filter whitespace and detect
// invalid tokens. Additionally validate all conditional branches, and
// compute their branch target.
let (imem, branches) = {
// Instruction memory holding the final bf program.
let mut imem = Vec::new();
// Helper to track index of open brackets.
let mut lhs_brackets = Vec::new();
// Mapping from branch instruction to branch target.
let mut branches = HashMap::new();
for (idx, token) in prog.chars().filter(|c| !c.is_whitespace()).enumerate() {
match token {
'<' | '>' | '+' | '-' | '.' | ',' => { /* ignore valid bf tokens */ }
'[' => lhs_brackets.push(idx),
']' => {
if let Some(lhs) = lhs_brackets.pop() {
branches.insert(lhs, idx);
branches.insert(idx, lhs);
} else {
return Err(format!("encountered un-balanced brackets, found ']' at index {idx} without matching '['"));
}
}
_ => return Err(format!("invalid bf token '{token}'")),
}
imem.push(token)
}
if !lhs_brackets.is_empty() {
return Err(String::from(
"encountered un-balanced brackets, left-over '[' after parsing bf program",
));
}
(imem, branches)
};
Ok(BrainfuckInterp {
pc: 0,
imem,
dptr: 0,
dmem: [0; 256],
branches,
})
}
}
fn run_interp(prog: &str) {
let mut vm = BrainfuckInterp::new(prog).unwrap();
loop {
let insn = match vm.imem.get(vm.pc) {
Some(insn) => insn,
None => break, // End of bf program.
};
let putchar = |val: u8| {
std::io::stdout()
.write(&[val])
.expect("Failed to write to stdout!");
};
match insn {
'>' => {
vm.dptr += 1;
assert!(vm.dptr < vm.dmem.len());
}
'<' => {
assert!(vm.dptr > 0);
vm.dptr -= 1;
}
'+' => {
vm.dmem[vm.dptr] += 1;
}
'-' => {
vm.dmem[vm.dptr] -= 1;
}
'.' => {
putchar(vm.dmem[vm.dptr]);
}
',' => {
unimplemented!("getchar");
}
'[' => {
if vm.dmem[vm.dptr] == 0 {
vm.pc = *vm.branches.get(&vm.pc).unwrap();
}
}
']' => {
if vm.dmem[vm.dptr] != 0 {
vm.pc = *vm.branches.get(&vm.pc).unwrap();
}
}
_ => unreachable!(),
}
vm.pc += 1;
}
}
// -- BRAINFUCK JIT ------------------------------------------------------------
#[cfg(not(any(target_arch = "x86_64", target_os = "linux")))]
compile_error!("Only supported on x86_64 with SystemV abi");
struct BrainfuckJit {
imem: Vec<char>,
dmem: [u8; 256],
}
impl BrainfuckJit {
fn new(prog: &str) -> Result<Self, String> {
// Do a first pass over the bf program to filter whitespace and detect
// invalid tokens.
let imem = prog
.chars()
.filter(|c| !c.is_whitespace())
.map(|c| match c {
'<' | '>' | '+' | '-' | '.' | ',' | '[' | ']' => Ok(c),
_ => Err(format!("invalid bf token '{c}'")),
})
.collect::<Result<Vec<char>, String>>()?;
Ok(BrainfuckJit {
imem,
dmem: [0; 256],
})
}
}
extern "C" fn putchar(c: u8) {
std::io::stdout()
.write(&[c])
.expect("Failed to write to stdout!");
}
fn run_jit(prog: &str) {
let mut vm = BrainfuckJit::new(prog).unwrap();
// Use callee saved registers to hold vm state, such that we don't need to
// save any state before calling out to putchar.
let dmem_base = Reg64::rbx;
let dmem_idx = Reg64::r12;
let mut asm = Asm::new();
// Move data memory pointer (argument on jit entry) into correct register.
asm.mov(dmem_base, Reg64::rdi);
// Clear data memory index.
asm.xor(dmem_idx, dmem_idx);
// A stack of label pairs, used to link up forward and backward jumps for a
// given '[]' pair.
let mut label_stack = Vec::new();
// Generate code for each instruction in the bf program.
let mut pc = 0;
while pc < vm.imem.len() {
match vm.imem[pc] {
'>' => {
// TODO: generate runtime bounds check.
asm.inc(dmem_idx);
}
'<' => {
// TODO: generate runtime bounds check.
asm.dec(dmem_idx);
}
'+' => {
// Apply optimization to fold consecutive '+' instructions to a
// single add instruction during compile time.
match vm.imem[pc..].iter().take_while(|&&i| i.eq(&'+')).count() {
1 => {
asm.inc(Mem8::indirect_base_index(dmem_base, dmem_idx));
}
cnt if cnt <= i8::MAX as usize => {
// For add m64, imm8, the immediate is sign-extend and
// hence treated as signed.
asm.add(
Mem8::indirect_base_index(dmem_base, dmem_idx),
Imm8::from(cnt as u8),
);
// Advance pc, but account for pc increment at the end
// of the loop.
pc += cnt - 1;
}
cnt @ _ => unimplemented!("cnt={cnt} oob, add with larger imm"),
}
}
'-' => {
// Apply optimization to fold consecutive '-' instructions to a
// single sub instruction during compile time.
match vm.imem[pc..].iter().take_while(|&&i| i.eq(&'-')).count() {
1 => {
asm.dec(Mem8::indirect_base_index(dmem_base, dmem_idx));
}
cnt if cnt <= i8::MAX as usize => {
// For sub m64, imm8, the immediate is sign-extend and
// hence treated as signed.
asm.sub(
Mem8::indirect_base_index(dmem_base, dmem_idx),
Imm8::from(cnt as u8),
);
// Advance pc, but account for pc increment at the end
// of the loop.
pc += cnt - 1;
}
cnt @ _ => unimplemented!("cnt={cnt} oob, sub with larger imm"),
}
}
'.' => {
// Load data memory from active cell into di register, which is
// the first argument register according to the SystemV abi,
// then call into putchar. Since we stored all out vm state in
// callee saved registers we don't need to save any registers
// before the call.
asm.mov(Reg8::dil, Mem8::indirect_base_index(dmem_base, dmem_idx));
asm.mov(Reg64::rax, Imm64::from(putchar as usize));
asm.call(Reg64::rax);
}
',' => {
unimplemented!("getchar");
}
'[' => {
// Create new label pair.
label_stack.push((Label::new(), Label::new()));
// UNWRAP: We just pushed a new entry on the stack.
let label_pair = label_stack.last_mut().unwrap();
// Goto label_pair.0 if data memory at active cell is 0.
// if vm.dmem[vm.dptr] == 0 goto label_pair.0
asm.cmp(
Mem8::indirect_base_index(dmem_base, dmem_idx),
Imm8::from(0u8),
);
asm.jz(&mut label_pair.0);
// Bind label_pair.1 after the jump instruction, which will be
// the branch target for the matching ']'.
asm.bind(&mut label_pair.1);
}
']' => {
let mut label_pair = label_stack
.pop()
.expect("encountered un-balanced brackets, found ']' without matching '['");
// Goto label_pair.1 if data memory at active cell is not 0.
// if vm.dmem[vm.dptr] != 0 goto label_pair.1
asm.cmp(
Mem8::indirect_base_index(dmem_base, dmem_idx),
Imm8::from(0u8),
);
asm.jnz(&mut label_pair.1);
// Bind label_pair.0 after the jump instruction, which is the
// branch target for the matching '['.
asm.bind(&mut label_pair.0);
}
_ => unreachable!(),
}
// Increment pc to next instruction.
pc += 1;
}
// Return from bf program.
asm.ret();
if !label_stack.is_empty() {
panic!("encountered un-balanced brackets, left-over '[' after jitting bf program")
}
// Execute jitted bf program.
let mut rt = Runtime::new();
let bf_entry = unsafe { rt.add_code::<extern "C" fn(*mut u8)>(asm.into_code()) };
bf_entry(&mut vm.dmem as *mut u8);
}
// -- MAIN ---------------------------------------------------------------------
fn main() {
// https://en.wikipedia.org/wiki/Brainfuck#Adding_two_values
//let inp = "++>+++++ [<+>-] ++++++++[<++++++>-]<.";
//println!("add-print-7 (wikipedia.org) - interp");
//run_interp(inp);
//println!("add-print-7 (wikipedia.org) - jit");
//run_jit(inp);
// https://en.wikipedia.org/wiki/Brainfuck#Hello_World!
let inp = "++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+[<]<-]>>.>---.+++++++..+++.>>.<-.<.+++.------.--------.>>+.>++.";
println!("hello-world (wikipedia.org) - interp");
run_interp(inp);
println!("hello-world (wikipedia.org) - jit");
run_jit(inp);
// https://programmingwiki.de/Brainfuck
let inp = ">+++++++++[<++++++++>-]<.>+++++++[<++++>-]<+.+++++++..+++.[-]>++++++++[<++++>-] <.>+++++++++++[<++++++++>-]<-.--------.+++.------.--------.[-]>++++++++[<++++>- ]<+.[-]++++++++++.";
println!("hello-world (programmingwiki.de) - interp");
run_interp(inp);
println!("hello-world (programmingwiki.de) - jit");
run_jit(inp);
}
|