1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
|
//! TinyVm example.
//!
//! This example introduces a simple 16 bit virtual machine the [`TinyVm`]. The VM consists of
//! three registers defined in [`TinyReg`], a separate _data_ and _instruction_ memory and a small
//! set of instructions [`TinyInsn`], sufficient to implement a guest program to compute the
//! Fibonacci sequence.
//!
//! The `TinyVm` implements a simple _just-in-time (JIT)_ compiler to demonstrate the
//! [`juicebox_asm`] crate. Additionally, it implements a reference _interpreter_.
//!
//! ```
//! fn main() {
//! let mut prog = Vec::new();
//! prog.push(TinyInsn::LoadImm(TinyReg::A, 100));
//! prog.push(TinyInsn::Add(TinyReg::B, TinyReg::A));
//! prog.push(TinyInsn::Addi(TinyReg::C, 100));
//! prog.push(TinyInsn::Halt);
//!
//! let mut vm = TinyVm::new(prog);
//! vm.interp();
//!
//! assert_eq!(100, vm.read_reg(TinyReg::A));
//! assert_eq!(100, vm.read_reg(TinyReg::B));
//! assert_eq!(100, vm.read_reg(TinyReg::C));
//! assert_eq!(4, vm.icnt);
//! assert_eq!(4, vm.pc);
//!
//! vm.pc = 0;
//! vm.jit();
//!
//! assert_eq!(100, vm.read_reg(TinyReg::A));
//! assert_eq!(200, vm.read_reg(TinyReg::B));
//! assert_eq!(200, vm.read_reg(TinyReg::C));
//! assert_eq!(8, vm.icnt);
//! assert_eq!(4, vm.pc);
//! }
//! ```
use juicebox_asm::insn::*;
use juicebox_asm::Runtime;
use juicebox_asm::{Asm, Imm16, Imm64, MemOp, Reg16, Reg64};
/// A guest physical address.
pub struct PhysAddr(pub u16);
impl Into<usize> for PhysAddr {
fn into(self) -> usize {
self.0 as usize
}
}
/// The registers for the [`TinyVm`].
#[derive(Debug, PartialEq, Clone, Copy)]
pub enum TinyReg {
A,
B,
C,
}
impl TinyReg {
#[inline]
fn idx(&self) -> usize {
*self as usize
}
}
/// The instructions for the [`TinyVm`].
#[derive(Debug, PartialEq, Clone, Copy)]
pub enum TinyInsn {
/// Halt the VM.
Halt,
/// Load the immediate value into the register `reg = imm`.
LoadImm(TinyReg, u16),
/// Load a value from the memory (absolute addressing) into the register `reg = mem[imm]`.
Load(TinyReg, u16),
/// Store a value from the register into the memory (absolute addressing) `mem[imm] = reg`.
Store(TinyReg, u16),
/// Add the register to the register `reg1 += reg2`.
Add(TinyReg, TinyReg),
/// Add the immediate to the register `reg += imm`.
Addi(TinyReg, i16),
/// Jump unconditional (absolute addressing) `pc = disp`.
Branch(usize),
/// Jump if the register is zero (absolute addressing) `pc = (reg == 0) ? disp : pc++`.
BranchZero(TinyReg, usize),
}
/// Value returned from a [`JitFn`].
#[repr(C)]
struct JitRet(u64, u64);
/// Function signature defining the simple JIT ABI used in this example.
/// A `JitFn` represents the entry point to a jit compiled _basic block_ of the guest software.
///
/// ```text
/// JIT entry:
/// arg0: pointer to guest registers
/// arg1: pointer to guest data memory
///
/// JIT exit:
/// JitRet(0, N): Halt instruction, executed N instructions.
/// JitRet(N, R): N!=0
/// End of basic block, executed N instructions,
/// must re-enter at `pc = R`.
/// ```
type JitFn = extern "C" fn(*mut u16, *mut u8) -> JitRet;
/// The `TinyVm` virtual machine state.
pub struct TinyVm {
/// Data memory, covering full 16 bit guest address space.
///
/// For simplicity add additional trailing 1 byte to support an unaligned access to 0xffff
/// without any special handling.
dmem: [u8; 0x1_0000 + 1],
/// Instruction memory.
imem: Vec<TinyInsn>,
/// VM registers.
regs: [u16; 3],
/// VM program counter.
pc: usize,
/// VM executed instruction counter (perf counter).
icnt: usize,
// -- JIT state.
/// Mapping of guest PCs to jitted host code (`JitFn`). This mapping is filled when guest
/// _basic blocks_ are jitted.
jit_cache: Vec<Option<JitFn>>,
/// JIT runtime maintaining the host pages containing the jitted guest code.
rt: Runtime,
}
impl TinyVm {
/// Create a new [`TinyVm`] and initialize the instruction memory from `code`.
pub fn new(code: Vec<TinyInsn>) -> Self {
let mut jit_cache = Vec::with_capacity(code.len());
jit_cache.resize(code.len(), None);
TinyVm {
dmem: [0; 0x1_0000 + 1],
imem: code,
regs: [0; 3],
pc: 0,
icnt: 0,
// -- JIT state.
jit_cache,
rt: Runtime::new(),
// Confifigure the runtime to generates perf meta data.
//rt: Runtime::with_profile(),
}
}
/// Read guest register.
#[inline]
pub fn read_reg(&self, reg: TinyReg) -> u16 {
self.regs[reg.idx()]
}
/// Write guest register.
#[inline]
pub fn write_reg(&mut self, reg: TinyReg, val: u16) {
self.regs[reg.idx()] = val;
}
/// Read guest data memory.
#[inline]
pub fn read_mem(&self, paddr: PhysAddr) -> u16 {
// dmem covers whole 16 bit address space + 1 byte for unaligned access at 0xffff.
let bytes = self.dmem[paddr.into()..][..2].try_into().unwrap();
u16::from_le_bytes(bytes)
}
/// Write guest data memory.
#[inline]
pub fn write_mem(&mut self, paddr: PhysAddr, val: u16) {
let bytes = val.to_le_bytes();
self.dmem[paddr.into()..][..2].copy_from_slice(&bytes);
}
/// Dump the VM state to stdout.
pub fn dump(&self) {
println!("-- TinyVm state --");
println!(" ICNT: {}", self.icnt);
println!(" PC : {:02x}", self.pc - 1);
println!(
" A:{:04x} B:{:04x} C:{:04x}",
self.read_reg(TinyReg::A),
self.read_reg(TinyReg::B),
self.read_reg(TinyReg::C),
);
}
/// Run in interpreter mode until the next [`TinyInsn::Halt`] instruction is hit.
pub fn interp(&mut self) {
'outer: loop {
let insn = self.imem[self.pc];
//println!("[0x{:02x}] {:?}", self.pc, insn);
self.pc = self.pc.wrapping_add(1);
self.icnt += 1;
match insn {
TinyInsn::Halt => {
break 'outer;
}
TinyInsn::LoadImm(a, imm) => {
self.write_reg(a, imm);
}
TinyInsn::Load(a, addr) => {
let val = self.read_mem(PhysAddr(addr));
self.write_reg(a, val);
}
TinyInsn::Store(a, addr) => {
let val = self.read_reg(a);
self.write_mem(PhysAddr(addr), val);
}
TinyInsn::Add(a, b) => {
let res = self.read_reg(a).wrapping_add(self.read_reg(b));
self.write_reg(a, res);
}
TinyInsn::Addi(a, imm) => {
let res = self.read_reg(a).wrapping_add(imm as u16);
self.write_reg(a, res);
}
TinyInsn::Branch(disp) => {
self.pc = disp;
}
TinyInsn::BranchZero(a, disp) => {
if self.read_reg(a) == 0 {
self.pc = disp;
}
}
}
}
}
/// Run in JIT mode until the next [`TinyInsn::Halt`] instruction is hit. Translate guest
/// _basic blocks_ on demand.
pub fn jit(&mut self) {
'outer: loop {
let bb_fn = if let Some(bb_fn) = self.jit_cache[self.pc] {
bb_fn
} else {
let bb_fn = self.translate_next_bb();
self.jit_cache[self.pc] = Some(bb_fn);
//println!("[0x{:02x}] translated bb at {:p}", self.pc, bb_fn);
bb_fn
};
match bb_fn(self.regs.as_mut_ptr(), self.dmem.as_mut_ptr()) {
// HALT instruction hit.
JitRet(0, insn) => {
self.pc += insn as usize;
self.icnt += insn as usize;
break 'outer;
}
// End of basic block, re-enter.
JitRet(insn, reenter_pc) => {
self.pc = reenter_pc as usize;
self.icnt += insn as usize;
}
}
}
}
#[cfg(all(any(target_arch = "x86_64", target_os = "linux")))]
/// Translate the bb at the current pc and return a JitFn pointer to it.
fn translate_next_bb(&mut self) -> JitFn {
let mut bb = Asm::new();
let mut pc = self.pc;
'outer: loop {
let insn = self.imem[pc];
pc = pc.wrapping_add(1);
// JIT abi: JitFn -> JitRet
//
// According to SystemV abi:
// enter
// rdi => regs
// rsi => dmem
// exit
// rax => JitRet.0
// rdx => JitRet.1
// Generate memory operand into regs for guest register.
let reg_op = |r: TinyReg| {
MemOp::IndirectDisp(Reg64::rdi, (r.idx() * 2).try_into().expect("only 3 regs"))
};
// Generate memory operand into dmem for guest phys address.
let mem_op = |paddr: u16| MemOp::IndirectDisp(Reg64::rsi, paddr.into());
// Compute instructions in translated basic block.
let bb_icnt = || -> u64 { (pc - self.pc).try_into().unwrap() };
let reenter_pc = |pc: usize| -> u64 { pc.try_into().unwrap() };
match insn {
TinyInsn::Halt => {
bb.mov(Reg64::rax, Imm64::from(0));
bb.mov(Reg64::rdx, Imm64::from(bb_icnt()));
bb.ret();
break 'outer;
}
TinyInsn::LoadImm(a, imm) => {
bb.mov(reg_op(a), Imm16::from(imm));
}
TinyInsn::Load(a, addr) => {
bb.mov(Reg16::ax, mem_op(addr));
bb.mov(reg_op(a), Reg16::ax);
}
TinyInsn::Store(a, addr) => {
bb.mov(Reg16::ax, reg_op(a));
bb.mov(mem_op(addr), Reg16::ax);
}
TinyInsn::Add(a, b) => {
bb.mov(Reg16::ax, reg_op(b));
bb.add(reg_op(a), Reg16::ax);
}
TinyInsn::Addi(a, imm) => {
bb.add(reg_op(a), Imm16::from(imm));
}
TinyInsn::Branch(disp) => {
bb.mov(Reg64::rax, Imm64::from(bb_icnt()));
bb.mov(Reg64::rdx, Imm64::from(reenter_pc(disp)));
bb.ret();
break 'outer;
}
TinyInsn::BranchZero(a, disp) => {
bb.cmp(reg_op(a), Imm16::from(0u16));
bb.mov(Reg64::rax, Imm64::from(bb_icnt()));
// Default fall-through PC (branch not taken).
bb.mov(Reg64::rdx, Imm64::from(reenter_pc(pc)));
// Conditionally update PC if condition is ZERO (branch taken).
bb.mov(Reg64::r11, Imm64::from(reenter_pc(disp)));
bb.cmovz(Reg64::rdx, Reg64::r11);
bb.ret();
break 'outer;
}
}
}
unsafe { self.rt.add_code::<JitFn>(bb.into_code()) }
}
}
/// A minial fixup utility to implement jump labels when constructing guest programs.
pub struct Fixup {
pc: usize,
}
impl Fixup {
/// Create a new `Fixup` at the current pc.
pub fn new(pc: usize) -> Self {
Fixup { pc }
}
/// Bind the `Fixup` to the current location of `prog` and resolve the `Fixup`.
pub fn bind(self, prog: &mut Vec<TinyInsn>) {
let plen = prog.len();
let insn = prog.get_mut(self.pc).expect(&format!(
"Trying to apply Fixup, but Fixup is out of range pc={} prog.len={}",
self.pc, plen
));
match insn {
TinyInsn::Branch(disp) | TinyInsn::BranchZero(_, disp) => {
*disp = plen;
}
_ => {
unimplemented!("Trying to fixup non-branch instruction '{:?}'", *insn);
}
}
}
}
/// Generate a guest program to compute the fiibonacci sequence for `n`.
pub fn make_tinyvm_fib(start_n: u16) -> Vec<TinyInsn> {
// Reference implementation:
//
// int fib(int n)
// int tmp = 0;
// int prv = 1;
// int sum = 0;
// loop:
// if (n == 0) goto end;
// tmp = sum;
// sum += prv;
// prv = tmp;
// --n;
// goto loop;
// end:
// return sum;
// Variables live in memory, bin to fixed addresses.
let tmp = 0u16;
let prv = 2u16;
let sum = 4u16;
// Loop counter mapped to register.
let n = TinyReg::C;
let mut prog = Vec::with_capacity(32);
// n = start_n
prog.push(TinyInsn::LoadImm(n, start_n));
// tmp = sum = 0
prog.push(TinyInsn::LoadImm(TinyReg::A, 0));
prog.push(TinyInsn::Store(TinyReg::A, tmp));
prog.push(TinyInsn::Store(TinyReg::A, sum));
// prv = 1
prog.push(TinyInsn::LoadImm(TinyReg::A, 1));
prog.push(TinyInsn::Store(TinyReg::A, prv));
// Create loop_start label.
let loop_start = prog.len();
// Create fixup to capture PC that need to be patched later.
let end_fixup = Fixup::new(prog.len());
// if (n == 0) goto end
prog.push(TinyInsn::BranchZero(n, 0xdead));
// tmp = sum
prog.push(TinyInsn::Load(TinyReg::A, sum));
prog.push(TinyInsn::Store(TinyReg::A, tmp));
// sum += prv
prog.push(TinyInsn::Load(TinyReg::B, prv));
prog.push(TinyInsn::Add(TinyReg::A, TinyReg::B));
prog.push(TinyInsn::Store(TinyReg::A, sum));
// prv = tmp
prog.push(TinyInsn::Load(TinyReg::A, tmp));
prog.push(TinyInsn::Store(TinyReg::A, prv));
// --n
prog.push(TinyInsn::Addi(n, -1));
// goto loop_start
prog.push(TinyInsn::Branch(loop_start));
// Bind end fixup to current PC, to patch branch to jump to here.
end_fixup.bind(&mut prog);
// TinyReg::A = sum
prog.push(TinyInsn::Load(TinyReg::A, sum));
// Halt the VM.
prog.push(TinyInsn::Halt);
prog
}
/// Generate a test program for the jit.
pub fn make_tinyvm_jit_test() -> Vec<TinyInsn> {
let mut prog = Vec::with_capacity(32);
prog.push(TinyInsn::Branch(1));
prog.push(TinyInsn::LoadImm(TinyReg::A, 0x0010));
prog.push(TinyInsn::LoadImm(TinyReg::B, 0x0));
let start = prog.len();
let end = Fixup::new(prog.len());
prog.push(TinyInsn::BranchZero(TinyReg::A, 0xdead));
prog.push(TinyInsn::LoadImm(TinyReg::C, 0x1));
prog.push(TinyInsn::Add(TinyReg::B, TinyReg::C));
prog.push(TinyInsn::Addi(TinyReg::A, -1));
prog.push(TinyInsn::Branch(start));
end.bind(&mut prog);
prog.push(TinyInsn::LoadImm(TinyReg::A, 0xabcd));
prog.push(TinyInsn::Store(TinyReg::A, 0xffff));
prog.push(TinyInsn::Load(TinyReg::C, 0xffff));
prog.push(TinyInsn::Halt);
prog.push(TinyInsn::Halt);
prog.push(TinyInsn::Halt);
prog.push(TinyInsn::Halt);
prog
}
/// Generate a simple count down loop to crunch some instructions.
pub fn make_tinyvm_jit_perf() -> Vec<TinyInsn> {
let mut prog = Vec::with_capacity(32);
prog.push(TinyInsn::Halt);
prog.push(TinyInsn::LoadImm(TinyReg::A, 0xffff));
prog.push(TinyInsn::LoadImm(TinyReg::B, 1));
prog.push(TinyInsn::LoadImm(TinyReg::C, 2));
prog.push(TinyInsn::Addi(TinyReg::A, -1));
prog.push(TinyInsn::BranchZero(TinyReg::A, 0));
prog.push(TinyInsn::Branch(2));
prog
}
fn main() {
let use_jit = match std::env::args().nth(1) {
Some(a) if a == "-h" || a == "--help" => {
println!("Usage: tiny_vm [mode]");
println!("");
println!("Options:");
println!(" mode if mode is 'jit' then run in jit mode, else in interpreter mode");
std::process::exit(0);
}
Some(a) if a == "jit" => true,
_ => false,
};
let mut vm = TinyVm::new(make_tinyvm_fib(42));
if use_jit {
println!("Run in jit mode..");
vm.jit();
} else {
println!("Run in interpreter mode..");
vm.interp();
}
vm.dump();
}
#[cfg(test)]
mod test {
use super::*;
fn fib_rs(n: u64) -> u64 {
if n < 2 {
n
} else {
let mut fib_n_m1 = 0;
let mut fib_n = 1;
for _ in 1..n {
let tmp = fib_n + fib_n_m1;
fib_n_m1 = fib_n;
fib_n = tmp;
}
fib_n
}
}
#[test]
fn test_fib_interp() {
for n in 0..92 {
let mut vm = TinyVm::new(make_tinyvm_fib(n));
vm.interp();
assert_eq!((fib_rs(n as u64) & 0xffff) as u16, vm.read_reg(TinyReg::A));
}
}
#[test]
fn test_fib_jit() {
for n in 0..92 {
let mut vm = TinyVm::new(make_tinyvm_fib(n));
vm.jit();
assert_eq!((fib_rs(n as u64) & 0xffff) as u16, vm.read_reg(TinyReg::A));
}
}
#[test]
fn test_fib_icnt() {
let mut vm1 = TinyVm::new(make_tinyvm_fib(91));
vm1.interp();
let mut vm2 = TinyVm::new(make_tinyvm_fib(91));
vm2.jit();
assert_eq!(vm1.icnt, vm2.icnt);
assert_eq!(vm1.pc, vm2.pc);
}
#[test]
fn test_jit_load_imm() {
let mut prog = Vec::new();
prog.push(TinyInsn::LoadImm(TinyReg::A, 0x1111));
prog.push(TinyInsn::LoadImm(TinyReg::B, 0x2222));
prog.push(TinyInsn::LoadImm(TinyReg::C, 0x3333));
prog.push(TinyInsn::Halt);
let mut vm = TinyVm::new(prog);
vm.jit();
assert_eq!(0x1111, vm.read_reg(TinyReg::A));
assert_eq!(0x2222, vm.read_reg(TinyReg::B));
assert_eq!(0x3333, vm.read_reg(TinyReg::C));
assert_eq!(4, vm.icnt);
assert_eq!(4, vm.pc);
}
#[test]
fn test_jit_add() {
let mut prog = Vec::new();
prog.push(TinyInsn::LoadImm(TinyReg::A, 0));
prog.push(TinyInsn::Addi(TinyReg::A, 123));
prog.push(TinyInsn::LoadImm(TinyReg::B, 100));
prog.push(TinyInsn::LoadImm(TinyReg::C, 200));
prog.push(TinyInsn::Add(TinyReg::B, TinyReg::C));
prog.push(TinyInsn::Halt);
let mut vm = TinyVm::new(prog);
vm.jit();
assert_eq!(123, vm.read_reg(TinyReg::A));
assert_eq!(300, vm.read_reg(TinyReg::B));
assert_eq!(200, vm.read_reg(TinyReg::C));
assert_eq!(6, vm.icnt);
assert_eq!(6, vm.pc);
}
#[test]
fn test_jit_load_store() {
let mut prog = Vec::new();
prog.push(TinyInsn::Load(TinyReg::A, 0xffff));
prog.push(TinyInsn::LoadImm(TinyReg::B, 0xf00d));
prog.push(TinyInsn::Store(TinyReg::B, 0x8000));
prog.push(TinyInsn::Halt);
let mut vm = TinyVm::new(prog);
vm.write_mem(PhysAddr(0xffff), 0xaabb);
vm.jit();
assert_eq!(0xaabb, vm.read_reg(TinyReg::A));
assert_eq!(0xf00d, vm.read_mem(PhysAddr(0x8000)));
assert_eq!(4, vm.icnt);
assert_eq!(4, vm.pc);
}
#[test]
fn test_jit_branch() {
let mut prog = Vec::new();
prog.push(TinyInsn::Branch(2));
prog.push(TinyInsn::Halt);
prog.push(TinyInsn::Branch(6));
prog.push(TinyInsn::LoadImm(TinyReg::A, 1));
prog.push(TinyInsn::LoadImm(TinyReg::B, 2));
prog.push(TinyInsn::LoadImm(TinyReg::C, 3));
prog.push(TinyInsn::Branch(1));
let mut vm = TinyVm::new(prog);
vm.jit();
assert_eq!(0, vm.read_reg(TinyReg::A));
assert_eq!(0, vm.read_reg(TinyReg::B));
assert_eq!(0, vm.read_reg(TinyReg::C));
assert_eq!(4, vm.icnt);
assert_eq!(2, vm.pc);
}
#[test]
fn test_jit_branch_zero() {
let mut prog = Vec::new();
prog.push(TinyInsn::LoadImm(TinyReg::A, 1));
prog.push(TinyInsn::BranchZero(TinyReg::A, 5));
prog.push(TinyInsn::LoadImm(TinyReg::A, 0));
prog.push(TinyInsn::BranchZero(TinyReg::A, 5));
prog.push(TinyInsn::LoadImm(TinyReg::B, 22));
prog.push(TinyInsn::Halt);
let mut vm = TinyVm::new(prog);
vm.jit();
assert_eq!(0, vm.read_reg(TinyReg::A));
assert_eq!(0, vm.read_reg(TinyReg::B));
assert_eq!(0, vm.read_reg(TinyReg::C));
assert_eq!(5, vm.icnt);
assert_eq!(6, vm.pc);
}
#[test]
fn test_mixed() {
let mut prog = Vec::new();
prog.push(TinyInsn::LoadImm(TinyReg::A, 100));
prog.push(TinyInsn::Add(TinyReg::B, TinyReg::A));
prog.push(TinyInsn::Addi(TinyReg::C, 100));
prog.push(TinyInsn::Halt);
let mut vm = TinyVm::new(prog);
vm.interp();
assert_eq!(100, vm.read_reg(TinyReg::A));
assert_eq!(100, vm.read_reg(TinyReg::B));
assert_eq!(100, vm.read_reg(TinyReg::C));
assert_eq!(4, vm.icnt);
assert_eq!(4, vm.pc);
vm.pc = 0;
vm.jit();
assert_eq!(100, vm.read_reg(TinyReg::A));
assert_eq!(200, vm.read_reg(TinyReg::B));
assert_eq!(200, vm.read_reg(TinyReg::C));
assert_eq!(8, vm.icnt);
assert_eq!(4, vm.pc);
}
}
|