1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
|
//! The `x64` jit assembler.
use crate::imm::Imm;
use crate::mem::{AddrMode, Mem, Mem16, Mem32, Mem64, Mem8};
use crate::reg::{Reg, Reg16, Reg32, Reg64, Reg8};
use crate::Label;
/// Encode the `REX` byte.
const fn rex(w: bool, r: u8, x: u8, b: u8) -> u8 {
let w = if w { 1 } else { 0 };
let r = (r >> 3) & 1;
let x = (x >> 3) & 1;
let b = (b >> 3) & 1;
0b0100_0000 | ((w & 1) << 3) | (r << 2) | (x << 1) | b
}
/// Encode the `ModR/M` byte.
const fn modrm(mod_: u8, reg: u8, rm: u8) -> u8 {
((mod_ & 0b11) << 6) | ((reg & 0b111) << 3) | (rm & 0b111)
}
/// Encode the `SIB` byte.
const fn sib(scale: u8, index: u8, base: u8) -> u8 {
((scale & 0b11) << 6) | ((index & 0b111) << 3) | (base & 0b111)
}
/// `x64` jit assembler.
pub struct Asm {
buf: Vec<u8>,
}
impl Asm {
/// Create a new `x64` jit assembler.
pub fn new() -> Asm {
// Some random default capacity.
let buf = Vec::with_capacity(1024);
Asm { buf }
}
/// Consume the assembler and get the emitted code.
pub fn into_code(self) -> Vec<u8> {
self.buf
}
/// Disassemble the code currently added to the runtime, using
/// [`ndisasm`](https://nasm.us/index.php) and print it to _stdout_. If
/// `ndisasm` is not available on the system this prints a warning and
/// becomes a nop.
///
/// # Panics
///
/// Panics if anything goes wrong with spawning, writing to or reading from
/// the `ndisasm` child process.
pub fn disasm(&self) {
crate::disasm::disasm(&self.buf);
}
/// Emit a slice of bytes.
pub(crate) fn emit(&mut self, bytes: &[u8]) {
self.buf.extend_from_slice(bytes);
}
/// Emit a slice of optional bytes.
fn emit_optional(&mut self, bytes: &[Option<u8>]) {
for byte in bytes.iter().filter_map(|&b| b) {
self.buf.push(byte);
}
}
/// Emit a slice of bytes at `pos`.
///
/// # Panics
///
/// Panics if [pos..pos+len] indexes out of bound of the underlying code buffer.
fn emit_at(&mut self, pos: usize, bytes: &[u8]) {
if let Some(buf) = self.buf.get_mut(pos..pos + bytes.len()) {
buf.copy_from_slice(bytes);
} else {
unimplemented!();
}
}
/// Bind the [Label] to the current location.
pub fn bind(&mut self, label: &mut Label) {
// Bind the label to the current offset.
label.bind(self.buf.len());
// Resolve any pending relocations for the label.
self.resolve(label);
}
/// If the [Label] is bound, patch any pending relocation.
fn resolve(&mut self, label: &mut Label) {
if let Some(loc) = label.location() {
// For now we only support disp32 as label location.
let loc = i32::try_from(loc).expect("Label location did not fit into i32.");
// Resolve any pending relocations for the label.
for off in label.offsets_mut().drain() {
// Displacement is relative to the next instruction following the jump.
// We record the offset to patch at the first byte of the disp32 therefore we need
// to account for that in the disp computation.
let disp32 = loc - i32::try_from(off).expect("Label offset did not fit into i32") - 4 /* account for the disp32 */;
// Patch the relocation with the disp32.
self.emit_at(off, &disp32.to_ne_bytes());
}
}
}
// -- Encode utilities.
/// Encode an register-register instruction.
pub(crate) fn encode_rr<T: Reg>(&mut self, opc: &[u8], op1: T, op2: T)
where
Self: EncodeRR<T>,
{
// MR operand encoding.
// op1 -> modrm.rm
// op2 -> modrm.reg
let modrm = modrm(
0b11, /* mod */
op2.idx(), /* reg */
op1.idx(), /* rm */
);
let prefix = <Self as EncodeRR<T>>::legacy_prefix();
let rex = <Self as EncodeRR<T>>::rex(op1, op2);
self.emit_optional(&[prefix, rex]);
self.emit(opc);
self.emit(&[modrm]);
}
/// Encode an offset-immediate instruction.
/// Register idx is encoded in the opcode.
pub(crate) fn encode_oi<T: Reg, U: Imm>(&mut self, opc: u8, op1: T, op2: U)
where
Self: EncodeR<T>,
{
let opc = opc + (op1.idx() & 0b111);
let prefix = <Self as EncodeR<T>>::legacy_prefix();
let rex = <Self as EncodeR<T>>::rex(op1);
self.emit_optional(&[prefix, rex]);
self.emit(&[opc]);
self.emit(op2.bytes());
}
/// Encode a register instruction.
pub(crate) fn encode_r<T: Reg>(&mut self, opc: u8, opc_ext: u8, op1: T)
where
Self: EncodeR<T>,
{
// M operand encoding.
// op1 -> modrm.rm
// opc extension -> modrm.reg
let modrm = modrm(
0b11, /* mod */
opc_ext, /* reg */
op1.idx(), /* rm */
);
let prefix = <Self as EncodeR<T>>::legacy_prefix();
let rex = <Self as EncodeR<T>>::rex(op1);
self.emit_optional(&[prefix, rex]);
self.emit(&[opc, modrm]);
}
/// Encode a memory operand instruction.
pub(crate) fn encode_m<T: Mem>(&mut self, opc: u8, opc_ext: u8, op1: T)
where
Self: EncodeM<T>,
{
// M operand encoding.
// op1 -> modrm.rm
let (mode, rm) = match op1.mode() {
AddrMode::Indirect => {
assert!(!op1.base().need_sib() && !op1.base().is_pc_rel());
(0b00, op1.base().idx())
}
AddrMode::IndirectDisp => {
assert!(!op1.base().need_sib());
(0b10, op1.base().idx())
}
AddrMode::IndirectBaseIndex => {
assert!(!op1.base().is_pc_rel());
// Using rsp as index register is interpreted as just base w/o offset.
// https://wiki.osdev.org/X86-64_Instruction_Encoding#32.2F64-bit_addressing_2
// Disallow this case, as guard for the user.
assert!(!matches!(op1.index(), Reg64::rsp));
(0b00, 0b100)
}
};
let modrm = modrm(
mode, /* mode */
opc_ext, /* reg */
rm, /* rm */
);
let prefix = <Self as EncodeM<T>>::legacy_prefix();
let rex = <Self as EncodeM<T>>::rex(&op1);
self.emit_optional(&[prefix, rex]);
self.emit(&[opc, modrm]);
match op1.mode() {
AddrMode::Indirect => {}
AddrMode::IndirectDisp => self.emit(&op1.disp().to_ne_bytes()),
AddrMode::IndirectBaseIndex => {
self.emit(&[sib(0, op1.index().idx(), op1.base().idx())])
}
}
}
/// Encode a memory-immediate instruction.
pub(crate) fn encode_mi<M: Mem, T: Imm>(&mut self, opc: u8, opc_ext: u8, op1: M, op2: T)
where
Self: EncodeM<M>,
{
// MI operand encoding.
// op1 -> modrm.rm
// op2 -> imm
let (mode, rm) = match op1.mode() {
AddrMode::Indirect => {
assert!(!op1.base().need_sib() && !op1.base().is_pc_rel());
(0b00, op1.base().idx())
}
AddrMode::IndirectDisp => {
assert!(!op1.base().need_sib());
(0b10, op1.base().idx())
}
AddrMode::IndirectBaseIndex => {
assert!(!op1.base().is_pc_rel());
// Using rsp as index register is interpreted as just base w/o offset.
// https://wiki.osdev.org/X86-64_Instruction_Encoding#32.2F64-bit_addressing_2
// Disallow this case, as guard for the user.
assert!(!matches!(op1.index(), Reg64::rsp));
(0b00, 0b100)
}
};
let modrm = modrm(
mode, /* mode */
opc_ext, /* reg */
rm, /* rm */
);
let prefix = <Self as EncodeM<M>>::legacy_prefix();
let rex = <Self as EncodeM<M>>::rex(&op1);
self.emit_optional(&[prefix, rex]);
self.emit(&[opc, modrm]);
match op1.mode() {
AddrMode::Indirect => {}
AddrMode::IndirectDisp => self.emit(&op1.disp().to_ne_bytes()),
AddrMode::IndirectBaseIndex => {
self.emit(&[sib(0, op1.index().idx(), op1.base().idx())])
}
}
self.emit(op2.bytes());
}
/// Encode a memory-register instruction.
pub(crate) fn encode_mr<M: Mem, T: Reg>(&mut self, opc: u8, op1: M, op2: T)
where
Self: EncodeMR<M>,
{
// MR operand encoding.
// op1 -> modrm.rm
// op2 -> modrm.reg
let (mode, rm) = match op1.mode() {
AddrMode::Indirect => {
assert!(!op1.base().need_sib() && !op1.base().is_pc_rel());
(0b00, op1.base().idx())
}
AddrMode::IndirectDisp => {
assert!(!op1.base().need_sib());
(0b10, op1.base().idx())
}
AddrMode::IndirectBaseIndex => {
assert!(!op1.base().is_pc_rel());
// Using rsp as index register is interpreted as just base w/o offset.
// https://wiki.osdev.org/X86-64_Instruction_Encoding#32.2F64-bit_addressing_2
// Disallow this case, as guard for the user.
assert!(!matches!(op1.index(), Reg64::rsp));
(0b00, 0b100)
}
};
let modrm = modrm(
mode, /* mode */
op2.idx(), /* reg */
rm, /* rm */
);
let prefix = <Self as EncodeMR<M>>::legacy_prefix();
let rex = <Self as EncodeMR<M>>::rex(&op1, op2);
self.emit_optional(&[prefix, rex]);
self.emit(&[opc, modrm]);
match op1.mode() {
AddrMode::Indirect => {}
AddrMode::IndirectDisp => self.emit(&op1.disp().to_ne_bytes()),
AddrMode::IndirectBaseIndex => {
self.emit(&[sib(0, op1.index().idx(), op1.base().idx())])
}
}
}
/// Encode a register-memory instruction.
pub(crate) fn encode_rm<T: Reg, M: Mem>(&mut self, opc: u8, op1: T, op2: M)
where
Self: EncodeMR<M>,
{
// RM operand encoding.
// op1 -> modrm.reg
// op2 -> modrm.rm
self.encode_mr(opc, op2, op1);
}
/// Encode a jump to label instruction.
pub(crate) fn encode_jmp_label(&mut self, opc: &[u8], op1: &mut Label) {
// Emit the opcode.
self.emit(opc);
// Record relocation offset starting at the first byte of the disp32.
op1.record_offset(self.buf.len());
// Emit a zeroed disp32, which serves as placeholder for the relocation.
// We currently only support disp32 jump targets.
self.emit(&[0u8; 4]);
// Resolve any pending relocations for the label.
self.resolve(op1);
}
}
// -- Encoder helper.
/// Encode helper for register-register instructions.
pub(crate) trait EncodeRR<T: Reg> {
fn legacy_prefix() -> Option<u8> {
None
}
fn rex(op1: T, op2: T) -> Option<u8> {
if op1.need_rex() || op2.need_rex() {
Some(rex(op1.rexw(), op2.idx(), 0, op1.idx()))
} else {
None
}
}
}
impl EncodeRR<Reg8> for Asm {}
impl EncodeRR<Reg32> for Asm {}
impl EncodeRR<Reg16> for Asm {
fn legacy_prefix() -> Option<u8> {
Some(0x66)
}
}
impl EncodeRR<Reg64> for Asm {}
/// Encode helper for register instructions.
pub(crate) trait EncodeR<T: Reg> {
fn legacy_prefix() -> Option<u8> {
None
}
fn rex(op1: T) -> Option<u8> {
if op1.need_rex() {
Some(rex(op1.rexw(), 0, 0, op1.idx()))
} else {
None
}
}
}
impl EncodeR<Reg8> for Asm {}
impl EncodeR<Reg32> for Asm {}
impl EncodeR<Reg16> for Asm {
fn legacy_prefix() -> Option<u8> {
Some(0x66)
}
}
impl EncodeR<Reg64> for Asm {}
/// Encode helper for memory-register instructions.
pub(crate) trait EncodeMR<M: Mem> {
fn legacy_prefix() -> Option<u8> {
None
}
fn rex<T: Reg>(op1: &M, op2: T) -> Option<u8> {
if M::is_64() || op2.is_ext() || op1.base().is_ext() || op1.index().is_ext() {
Some(rex(
M::is_64(),
op2.idx(),
op1.index().idx(),
op1.base().idx(),
))
} else {
None
}
}
}
impl EncodeMR<Mem8> for Asm {}
impl EncodeMR<Mem16> for Asm {
fn legacy_prefix() -> Option<u8> {
Some(0x66)
}
}
impl EncodeMR<Mem32> for Asm {}
impl EncodeMR<Mem64> for Asm {}
/// Encode helper for memory perand instructions.
pub(crate) trait EncodeM<M: Mem> {
fn legacy_prefix() -> Option<u8> {
None
}
fn rex(op1: &M) -> Option<u8> {
if M::is_64() || op1.base().is_ext() || op1.index().is_ext() {
Some(rex(M::is_64(), 0, op1.index().idx(), op1.base().idx()))
} else {
None
}
}
}
impl EncodeM<Mem8> for Asm {}
impl EncodeM<Mem16> for Asm {
fn legacy_prefix() -> Option<u8> {
Some(0x66)
}
}
impl EncodeM<Mem32> for Asm {}
impl EncodeM<Mem64> for Asm {}
|