1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
use std::collections::HashMap;
use crate::llvm::{FnValue, FunctionPassManager, IRBuilder, Module, Value};
use crate::parser::{ExprAST, FunctionAST, PrototypeAST};
use crate::Either;
type CodegenResult<T> = Result<T, String>;
/// Code generator from kaleidoscope AST to LLVM IR.
pub struct Codegen<'llvm, 'a> {
module: &'llvm Module,
builder: &'a IRBuilder<'llvm>,
fpm: &'a FunctionPassManager<'llvm>,
fn_protos: &'a mut HashMap<String, PrototypeAST>,
}
impl<'llvm, 'a> Codegen<'llvm, 'a> {
/// Compile either a [`PrototypeAST`] or a [`FunctionAST`] into the LLVM `module`.
pub fn compile(
module: &'llvm Module,
fn_protos: &mut HashMap<String, PrototypeAST>,
compilee: Either<&PrototypeAST, &FunctionAST>,
) -> CodegenResult<FnValue<'llvm>> {
let mut cg = Codegen {
module,
builder: &IRBuilder::with_ctx(module),
fpm: &FunctionPassManager::with_ctx(module),
fn_protos,
};
let mut variables = HashMap::new();
match compilee {
Either::A(proto) => Ok(cg.codegen_prototype(proto)),
Either::B(func) => cg.codegen_function(func, &mut variables),
}
}
fn codegen_expr(
&self,
expr: &ExprAST,
named_values: &mut HashMap<String, Value<'llvm>>,
) -> CodegenResult<Value<'llvm>> {
match expr {
ExprAST::Number(num) => Ok(self.module.type_f64().const_f64(*num)),
ExprAST::Variable(name) => match named_values.get(name.as_str()) {
Some(value) => Ok(*value),
None => Err("Unknown variable name".into()),
},
ExprAST::Binary(binop, lhs, rhs) => {
let l = self.codegen_expr(lhs, named_values)?;
let r = self.codegen_expr(rhs, named_values)?;
match binop {
'+' => Ok(self.builder.fadd(l, r)),
'-' => Ok(self.builder.fsub(l, r)),
'*' => Ok(self.builder.fmul(l, r)),
'<' => {
let res = self.builder.fcmpult(l, r);
// Turn bool into f64.
Ok(self.builder.uitofp(res, self.module.type_f64()))
}
_ => Err("invalid binary operator".into()),
}
}
ExprAST::Call(callee, args) => match self.get_function(callee) {
Some(callee) => {
if callee.args() != args.len() {
return Err("Incorrect # arguments passed".into());
}
// Generate code for function argument expressions.
let mut args: Vec<Value<'_>> = args
.iter()
.map(|arg| self.codegen_expr(arg, named_values))
.collect::<CodegenResult<_>>()?;
Ok(self.builder.call(callee, &mut args))
}
None => Err("Unknown function referenced".into()),
},
ExprAST::If { cond, then, else_ } => {
// For 'if' expressions we are building the following CFG.
//
// ; cond
// br
// |
// +-----+------+
// v v
// ; then ; else
// | |
// +-----+------+
// v
// ; merge
// phi then, else
// ret phi
let cond_v = {
// Codgen 'cond' expression.
let v = self.codegen_expr(cond, named_values)?;
// Compare 'v' against '0' as 'one = ordered not equal'.
self.builder
.fcmpone(v, self.module.type_f64().const_f64(0f64))
};
// Get the function we are currently inserting into.
let the_function = self.builder.get_insert_block().get_parent();
// Create basic blocks for the 'then' / 'else' expressions as well as the return
// instruction ('merge').
//
// Append the 'then' basic block to the function, don't insert the 'else' and
// 'merge' basic blocks yet.
let then_bb = self.module.append_basic_block(the_function);
let else_bb = self.module.create_basic_block();
let merge_bb = self.module.create_basic_block();
// Create a conditional branch based on the result of the 'cond' expression.
self.builder.cond_br(cond_v, then_bb, else_bb);
// Move to 'then' basic block and codgen the 'then' expression.
self.builder.pos_at_end(then_bb);
let then_v = self.codegen_expr(then, named_values)?;
// Create unconditional branch to 'merge' block.
self.builder.br(merge_bb);
// Update reference to current basic block (in case the 'then' expression added new
// basic blocks).
let then_bb = self.builder.get_insert_block();
// Now append the 'else' basic block to the function.
the_function.append_basic_block(else_bb);
// Move to 'else' basic block and codgen the 'else' expression.
self.builder.pos_at_end(else_bb);
let else_v = self.codegen_expr(else_, named_values)?;
// Create unconditional branch to 'merge' block.
self.builder.br(merge_bb);
// Update reference to current basic block (in case the 'else' expression added new
// basic blocks).
let else_bb = self.builder.get_insert_block();
// Now append the 'merge' basic block to the function.
the_function.append_basic_block(merge_bb);
// Move to 'merge' basic block.
self.builder.pos_at_end(merge_bb);
// Codegen the phi node returning the appropriate value depending on the branch
// condition.
let phi = self.builder.phi(
self.module.type_f64(),
&[(then_v, then_bb), (else_v, else_bb)],
);
Ok(*phi)
}
ExprAST::For {
var,
start,
end,
step,
body,
} => {
// For 'for' expression we build the following structure.
//
// entry:
// init = start expression
// br loop
// loop:
// i = phi [%init, %entry], [%new_i, %loop]
// ; loop body ...
// new_i = increment %i by step expression
// ; check end condition and branch
// end:
// Compute initial value for the loop variable.
let start_val = self.codegen_expr(start, named_values)?;
let the_function = self.builder.get_insert_block().get_parent();
// Get current basic block (used in the loop variable phi node).
let entry_bb = self.builder.get_insert_block();
// Add new basic block to emit loop body.
let loop_bb = self.module.append_basic_block(the_function);
self.builder.br(loop_bb);
self.builder.pos_at_end(loop_bb);
// Build phi not to pick loop variable in case we come from the 'entry' block.
// Which is the case when we enter the loop for the first time.
// We will add another incoming value once we computed the updated loop variable
// below.
let variable = self
.builder
.phi(self.module.type_f64(), &[(start_val, entry_bb)]);
// Insert the loop variable into the named values map that it can be referenced
// from the body as well as the end condition.
// In case the loop variable shadows an existing variable remember the shared one.
let old_val = named_values.insert(var.into(), *variable);
// Generate the loop body.
self.codegen_expr(body, named_values)?;
// Generate step value expression if available else use '1'.
let step_val = if let Some(step) = step {
self.codegen_expr(step, named_values)?
} else {
self.module.type_f64().const_f64(1f64)
};
// Increment loop variable.
let next_var = self.builder.fadd(*variable, step_val);
// Generate the loop end condition.
let end_cond = self.codegen_expr(end, named_values)?;
let end_cond = self
.builder
.fcmpone(end_cond, self.module.type_f64().const_f64(0f64));
// Get current basic block.
let loop_end_bb = self.builder.get_insert_block();
// Add new basic block following the loop.
let after_bb = self.module.append_basic_block(the_function);
// Register additional incoming value for the loop variable. This will choose the
// updated loop variable if we are iterating in the loop.
variable.add_incoming(next_var, loop_end_bb);
// Branch depending on the loop end condition.
self.builder.cond_br(end_cond, loop_bb, after_bb);
self.builder.pos_at_end(after_bb);
// Restore the shadowed variable if there was one.
if let Some(old_val) = old_val {
// We inserted 'var' above so it must exist.
*named_values.get_mut(var).unwrap() = old_val;
} else {
named_values.remove(var);
}
// Loops just always return 0.
Ok(self.module.type_f64().const_f64(0f64))
}
}
}
fn codegen_prototype(&self, PrototypeAST(name, args): &PrototypeAST) -> FnValue<'llvm> {
let type_f64 = self.module.type_f64();
let mut doubles = Vec::new();
doubles.resize(args.len(), type_f64);
// Build the function type: fn(f64, f64, ..) -> f64
let ft = self.module.type_fn(&mut doubles, type_f64);
// Create the function declaration.
let f = self.module.add_fn(name, ft);
// Set the names of the function arguments.
for idx in 0..f.args() {
f.arg(idx).set_name(&args[idx]);
}
f
}
fn codegen_function(
&mut self,
FunctionAST(proto, body): &FunctionAST,
named_values: &mut HashMap<String, Value<'llvm>>,
) -> CodegenResult<FnValue<'llvm>> {
// Insert the function prototype into the `fn_protos` map to keep track for re-generating
// declarations in other modules.
self.fn_protos.insert(proto.0.clone(), proto.clone());
let the_function = self.get_function(&proto.0)
.expect("If proto not already generated, get_function will do for us since we updated fn_protos before-hand!");
if the_function.basic_blocks() > 0 {
return Err("Function cannot be redefined.".into());
}
// Create entry basic block to insert code.
let bb = self.module.append_basic_block(the_function);
self.builder.pos_at_end(bb);
// New scope, clear the map with the function args.
named_values.clear();
// Update the map with the current functions args.
for idx in 0..the_function.args() {
let arg = the_function.arg(idx);
named_values.insert(arg.get_name().into(), arg);
}
// Codegen function body.
if let Ok(ret) = self.codegen_expr(body, named_values) {
self.builder.ret(ret);
assert!(the_function.verify());
// Run the optimization passes on the function.
self.fpm.run(the_function);
Ok(the_function)
} else {
todo!("Failed to codegen function body, erase from module!");
}
}
/// Lookup function with `name` in the LLVM module and return the corresponding value reference.
/// If the function is not available in the module, check if the prototype is known and codegen
/// it.
/// Return [`None`] if the prototype is not known.
fn get_function(&self, name: &str) -> Option<FnValue<'llvm>> {
let callee = match self.module.get_fn(name) {
Some(callee) => callee,
None => {
let proto = self.fn_protos.get(name)?;
self.codegen_prototype(proto)
}
};
Some(callee)
}
}
|