//! The `x64` jit assembler.
use crate::*;
use imm::Imm;
use reg::Reg;
/// Encode the `REX` byte.
const fn rex(w: bool, r: u8, x: u8, b: u8) -> u8 {
let w = if w { 1 } else { 0 };
let r = (r >> 3) & 1;
let x = (x >> 3) & 1;
let b = (b >> 3) & 1;
0b0100_0000 | ((w & 1) << 3) | (r << 2) | (x << 1) | b
}
/// Encode the `ModR/M` byte.
const fn modrm(mod_: u8, reg: u8, rm: u8) -> u8 {
((mod_ & 0b11) << 6) | ((reg & 0b111) << 3) | (rm & 0b111)
}
/// Encode the `SIB` byte.
const fn sib(scale: u8, index: u8, base: u8) -> u8 {
((scale & 0b11) << 6) | ((index & 0b111) << 3) | (base & 0b111)
}
/// `x64` jit assembler.
pub struct Asm {
buf: Vec<u8>,
}
impl Asm {
/// Create a new `x64` jit assembler.
pub fn new() -> Asm {
// Some random default capacity.
let buf = Vec::with_capacity(1024);
Asm { buf }
}
/// Consume the assembler and get the emitted code.
pub fn into_code(self) -> Vec<u8> {
self.buf
}
/// Emit a slice of bytes.
pub(crate) fn emit(&mut self, bytes: &[u8]) {
self.buf.extend_from_slice(bytes);
}
/// Emit a slice of optional bytes.
fn emit_optional(&mut self, bytes: &[Option<u8>]) {
for byte in bytes.iter().filter_map(|&b| b) {
self.buf.push(byte);
}
}
/// Emit a slice of bytes at `pos`.
///
/// # Panics
///
/// Panics if [pos..pos+len] indexes out of bound of the underlying code buffer.
fn emit_at(&mut self, pos: usize, bytes: &[u8]) {
if let Some(buf) = self.buf.get_mut(pos..pos + bytes.len()) {
buf.copy_from_slice(bytes);
} else {
unimplemented!();
}
}
/// Bind the [Label] to the current location.
pub fn bind(&mut self, label: &mut Label) {
// Bind the label to the current offset.
label.bind(self.buf.len());
// Resolve any pending relocations for the label.
self.resolve(label);
}
/// If the [Label] is bound, patch any pending relocation.
fn resolve(&mut self, label: &mut Label) {
if let Some(loc) = label.location() {
// For now we only support disp32 as label location.
let loc = i32::try_from(loc).expect("Label location did not fit into i32.");
// Resolve any pending relocations for the label.
for off in label.offsets_mut().drain() {
// Displacement is relative to the next instruction following the jump.
// We record the offset to patch at the first byte of the disp32 therefore we need
// to account for that in the disp computation.
let disp32 = loc - i32::try_from(off).expect("Label offset did not fit into i32") - 4 /* account for the disp32 */;
// Patch the relocation with the disp32.
self.emit_at(off, &disp32.to_ne_bytes());
}
}
}
// -- Encode utilities.
/// Encode an register-register instruction.
pub(crate) fn encode_rr<T: Reg>(&mut self, opc: &[u8], op1: T, op2: T)
where
Self: EncodeRR<T>,
{
// MR operand encoding.
// op1 -> modrm.rm
// op2 -> modrm.reg
let modrm = modrm(
0b11, /* mod */
op2.idx(), /* reg */
op1.idx(), /* rm */
);
let prefix = <Self as EncodeRR<T>>::legacy_prefix();
let rex = <Self as EncodeRR<T>>::rex(op1, op2);
self.emit_optional(&[prefix, rex]);
self.emit(opc);
self.emit(&[modrm]);
}
/// Encode an offset-immediate instruction.
/// Register idx is encoded in the opcode.
pub(crate) fn encode_oi<T: Reg, U: Imm>(&mut self, opc: u8, op1: T, op2: U)
where
Self: EncodeR<T>,
{
let opc = opc + (op1.idx() & 0b111);
let prefix = <Self as EncodeR<T>>::legacy_prefix();
let rex = <Self as EncodeR<T>>::rex(op1);
self.emit_optional(&[prefix, rex]);
self.emit(&[opc]);
self.emit(op2.bytes());
}
/// Encode a register instruction.
pub(crate) fn encode_r<T: Reg>(&mut self, opc: u8, opc_ext: u8, op1: T)
where
Self: EncodeR<T>,
{
// M operand encoding.
// op1 -> modrm.rm
// opc extension -> modrm.reg
let modrm = modrm(
0b11, /* mod */
opc_ext, /* reg */
op1.idx(), /* rm */
);
let prefix = <Self as EncodeR<T>>::legacy_prefix();
let rex = <Self as EncodeR<T>>::rex(op1);
self.emit_optional(&[prefix, rex]);
self.emit(&[opc, modrm]);
}
/// Encode a memory operand instruction.
pub(crate) fn encode_m<T: MemOpSized>(&mut self, opc: u8, opc_ext: u8, op1: T)
where
Self: EncodeM<T>,
{
let op1 = op1.mem_op();
// M operand encoding.
// op1 -> modrm.rm
let (mode, rm) = match op1 {
MemOp::Indirect(..) => {
assert!(!op1.base().need_sib() && !op1.base().is_pc_rel());
(0b00, op1.base().idx())
}
MemOp::IndirectDisp(..) => {
assert!(!op1.base().need_sib());
(0b10, op1.base().idx())
}
MemOp::IndirectBaseIndex(..) => {
assert!(!op1.base().is_pc_rel());
// Using rsp as index register is interpreted as just base w/o offset.
// https://wiki.osdev.org/X86-64_Instruction_Encoding#32.2F64-bit_addressing_2
// Disallow this case, as guard for the user.
assert!(!matches!(op1.index(), Reg64::rsp));
(0b00, 0b100)
}
};
let modrm = modrm(
mode, /* mode */
opc_ext, /* reg */
rm, /* rm */
);
let prefix = <Self as EncodeM<T>>::legacy_prefix();
let rex = <Self as EncodeM<T>>::rex(&op1);
self.emit_optional(&[prefix, rex]);
self.emit(&[opc, modrm]);
match op1 {
MemOp::Indirect(..) => {}
MemOp::IndirectDisp(_, disp) => self.emit(&disp.to_ne_bytes()),
MemOp::IndirectBaseIndex(base, index) => self.emit(&[sib(0, index.idx(), base.idx())]),
}
}
/// Encode a memory-immediate instruction.
pub(crate) fn encode_mi<T: Imm>(&mut self, opc: u8, opc_ext: u8, op1: MemOp, op2: T)
where
Self: EncodeMI<T>,
{
// MI operand encoding.
// op1 -> modrm.rm
// op2 -> imm
let (mode, rm) = match op1 {
MemOp::Indirect(..) => {
assert!(!op1.base().need_sib() && !op1.base().is_pc_rel());
(0b00, op1.base().idx())
}
MemOp::IndirectDisp(..) => {
assert!(!op1.base().need_sib());
(0b10, op1.base().idx())
}
MemOp::IndirectBaseIndex(..) => {
assert!(!op1.base().is_pc_rel());
// Using rsp as index register is interpreted as just base w/o offset.
// https://wiki.osdev.org/X86-64_Instruction_Encoding#32.2F64-bit_addressing_2
// Disallow this case, as guard for the user.
assert!(!matches!(op1.index(), Reg64::rsp));
(0b00, 0b100)
}
};
let modrm = modrm(
mode, /* mode */
opc_ext, /* reg */
rm, /* rm */
);
let prefix = <Self as EncodeMI<T>>::legacy_prefix();
let rex = <Self as EncodeMI<T>>::rex(&op1);
self.emit_optional(&[prefix, rex]);
self.emit(&[opc, modrm]);
match op1 {
MemOp::Indirect(..) => {}
MemOp::IndirectDisp(_, disp) => self.emit(&disp.to_ne_bytes()),
MemOp::IndirectBaseIndex(base, index) => self.emit(&[sib(0, index.idx(), base.idx())]),
}
self.emit(op2.bytes());
}
/// Encode a memory-register instruction.
pub(crate) fn encode_mr<T: Reg>(&mut self, opc: u8, op1: MemOp, op2: T)
where
Self: EncodeMR<T>,
{
// MR operand encoding.
// op1 -> modrm.rm
// op2 -> modrm.reg
let (mode, rm) = match op1 {
MemOp::Indirect(..) => {
assert!(!op1.base().need_sib() && !op1.base().is_pc_rel());
(0b00, op1.base().idx())
}
MemOp::IndirectDisp(..) => {
assert!(!op1.base().need_sib());
(0b10, op1.base().idx())
}
MemOp::IndirectBaseIndex(..) => {
assert!(!op1.base().is_pc_rel());
// Using rsp as index register is interpreted as just base w/o offset.
// https://wiki.osdev.org/X86-64_Instruction_Encoding#32.2F64-bit_addressing_2
// Disallow this case, as guard for the user.
assert!(!matches!(op1.index(), Reg64::rsp));
(0b00, 0b100)
}
};
let modrm = modrm(
mode, /* mode */
op2.idx(), /* reg */
rm, /* rm */
);
let prefix = <Self as EncodeMR<T>>::legacy_prefix();
let rex = <Self as EncodeMR<T>>::rex(&op1, op2);
self.emit_optional(&[prefix, rex]);
self.emit(&[opc, modrm]);
match op1 {
MemOp::Indirect(..) => {}
MemOp::IndirectDisp(_, disp) => self.emit(&disp.to_ne_bytes()),
MemOp::IndirectBaseIndex(base, index) => self.emit(&[sib(0, index.idx(), base.idx())]),
}
}
/// Encode a register-memory instruction.
pub(crate) fn encode_rm<T: Reg>(&mut self, opc: u8, op1: T, op2: MemOp)
where
Self: EncodeMR<T>,
{
// RM operand encoding.
// op1 -> modrm.reg
// op2 -> modrm.rm
self.encode_mr(opc, op2, op1);
}
/// Encode a jump to label instruction.
pub(crate) fn encode_jmp_label(&mut self, opc: &[u8], op1: &mut Label) {
// Emit the opcode.
self.emit(opc);
// Record relocation offset starting at the first byte of the disp32.
op1.record_offset(self.buf.len());
// Emit a zeroed disp32, which serves as placeholder for the relocation.
// We currently only support disp32 jump targets.
self.emit(&[0u8; 4]);
// Resolve any pending relocations for the label.
self.resolve(op1);
}
}
// -- Encoder helper.
/// Encode helper for register-register instructions.
pub(crate) trait EncodeRR<T: Reg> {
fn legacy_prefix() -> Option<u8> {
None
}
fn rex(op1: T, op2: T) -> Option<u8> {
if op1.need_rex() || op2.need_rex() {
Some(rex(op1.rexw(), op2.idx(), 0, op1.idx()))
} else {
None
}
}
}
impl EncodeRR<Reg8> for Asm {}
impl EncodeRR<Reg32> for Asm {}
impl EncodeRR<Reg16> for Asm {
fn legacy_prefix() -> Option<u8> {
Some(0x66)
}
}
impl EncodeRR<Reg64> for Asm {}
/// Encode helper for register instructions.
pub(crate) trait EncodeR<T: Reg> {
fn legacy_prefix() -> Option<u8> {
None
}
fn rex(op1: T) -> Option<u8> {
if op1.need_rex() {
Some(rex(op1.rexw(), 0, 0, op1.idx()))
} else {
None
}
}
}
impl EncodeR<Reg8> for Asm {}
impl EncodeR<Reg32> for Asm {}
impl EncodeR<Reg16> for Asm {
fn legacy_prefix() -> Option<u8> {
Some(0x66)
}
}
impl EncodeR<Reg64> for Asm {}
/// Encode helper for memory-register instructions.
pub(crate) trait EncodeMR<T: Reg> {
fn legacy_prefix() -> Option<u8> {
None
}
fn rex(op1: &MemOp, op2: T) -> Option<u8> {
if op2.need_rex() || op1.base().is_ext() || op1.index().is_ext() {
Some(rex(
op2.rexw(),
op2.idx(),
op1.index().idx(),
op1.base().idx(),
))
} else {
None
}
}
}
impl EncodeMR<Reg8> for Asm {}
impl EncodeMR<Reg16> for Asm {
fn legacy_prefix() -> Option<u8> {
Some(0x66)
}
}
impl EncodeMR<Reg32> for Asm {}
impl EncodeMR<Reg64> for Asm {}
/// Encode helper for memory-immediate instructions.
pub(crate) trait EncodeMI<T: Imm> {
fn legacy_prefix() -> Option<u8> {
None
}
fn rex(op1: &MemOp) -> Option<u8> {
if op1.base().is_ext() || op1.index().is_ext() {
Some(rex(false, 0, op1.index().idx(), op1.base().idx()))
} else {
None
}
}
}
impl EncodeMI<Imm8> for Asm {}
impl EncodeMI<Imm16> for Asm {
fn legacy_prefix() -> Option<u8> {
Some(0x66)
}
}
impl EncodeMI<Imm32> for Asm {}
/// Encode helper for memory operand instructions.
pub(crate) trait EncodeM<T: MemOpSized> {
fn legacy_prefix() -> Option<u8> {
None
}
fn rex(op1: &MemOp) -> Option<u8> {
if op1.base().is_ext() || op1.index().is_ext() || Self::is_64bit() {
Some(rex(
Self::is_64bit(),
0,
op1.index().idx(),
op1.base().idx(),
))
} else {
None
}
}
fn is_64bit() -> bool {
false
}
}
impl EncodeM<MemOp8> for Asm {}
impl EncodeM<MemOp16> for Asm {
fn legacy_prefix() -> Option<u8> {
Some(0x66)
}
}
impl EncodeM<MemOp32> for Asm {}
impl EncodeM<MemOp64> for Asm {
fn is_64bit() -> bool {
true
}
}